Преобразование выражений с корнями и степенями часто требует выполнения переходов от корней к степеням и обратно. В этой статье мы разберем, как такие переходы осуществляются, что лежит в их основе, и в каких моментах чаще всего возникают ошибки. Все это снабдим характерными примерами с детальным разбором решений.
Навигация по странице.
Переход от степеней с дробными показателями к корням
Возможность перехода от степени с дробным показателем к корню диктуется самим определением степени. Напомним, как определяется : степенью положительного числа a
с дробным показателем m/n
, где m
– целое, а n
– натуральное число, называют корень n-ой степени из a m
, то есть, где a>0
, m∈Z
, n∈N
. Аналогично определяется и дробная степень нуля , с той лишь разницей, что в этом случае m
уже считается не целым, а натуральным, чтобы не возникало деления на нуль.
Таким образом, степень всегда можно заменить на корень . Например, от можно перейти к , а степень можно заменить корнем . А вот переходить от выражения к корню не следует, так как степень изначально не имеет смысла (степень отрицательных чисел не определена), несмотря на то, что корень имеет смысл.
Как видите, в переходе от степеней чисел к корням нет абсолютно ничего мудреного. Аналогично осуществляется переход к корням от степеней с дробными показателями, в основании которых находятся произвольные выражения. Заметим, что указанный переход осуществляется на ОДЗ переменных для исходного выражения. К примеру, выражение на всей ОДЗ переменной x
для этого выражения можно заменить корнем
. А от степени
перейти к корню
, такая замена имеет место для любого набора переменных x
, y
и z
из ОДЗ для исходного выражения.
Замена корней степенями
Возможна и обратная замена, то есть, замена корней на степени с дробными показателями . В ее основе также лежит равенство , которое в данном случае используется справа налево, то есть, в виде .
Для положительных a указанный переход очевиден. Например, можно заменить степенью , а от корня перейти к степени с дробным показателем вида .
А при отрицательных a равенство не имеет смысла, но корень при этом может иметь смысл. Например, корни и имеют смысл, но заменить их степенями и нельзя. Так можно ли их вообще преобразовать в выражения со степенями? Можно, если провести предварительные преобразования, заключающиеся в переходе к корням с неотрицательными числами под ними, которые потом и заменить степенями с дробными показателями. Покажем, в чем заключаются эти предварительные преобразования и как их провести.
В случае с корнем позволяют выполнить такие преобразования: . А так как 4
– положительное число, то последний корень можно заменить степенью . А во втором случае определение корня нечетной степени из отрицательного числа
−a
(при этом a
– положительное), выражающееся равенством
, позволяет корень заменить выражением , в котором кубический корень из двух уже можно заменить степенью, и оно примет вид .
Осталось разобрать, как заменяются корни, под которыми находятся выражения, на степени, содержащие эти выражения в основании. Здесь не стоит спешить с заменой на , буквой A мы обозначили некоторое выражение. Приведем пример, поясняющий, что под этим имеется в виду. Корень так и хочется заменить степенью , основываясь на равенстве . Но такая замена уместна лишь при условии x−3≥0 , а для остальных значений переменной x из ОДЗ (удовлетворяющих условию x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.
Из-за такого неаккуратного применения формулы нередко возникают ошибки при переходе от корней к степеням. Например, в учебнике
дано задание, представить выражение в виде степени с рациональным показателем, и приведен ответ , который вызывает вопросы, так как в условии не задано ограничение b>0
. А в учебнике
присутствует переход от выражения , скорее всего через следующие преобразования иррационального выражения
к выражению . Последний переход также вызывает вопросы, так как сужает ОДЗ.
Возникает закономерный вопрос: «Как же правильно перейти от корня к степени для всех значений переменных из ОДЗ»? Такая замена проводится на базе следующих утверждений:
Прежде чем обосновать записанные результаты, приведем несколько примеров их использования для перехода от корней к степеням. Для начала вернемся к выражению . Его надо было заменять не на , а на (в данном случае m=2
– целое четное, n=3
– натуральное). Другой пример: .
Теперь обещанное обоснование результатов.
Когда m – целое нечетное, а n – натуральное четное, то для любого набора переменных из ОДЗ для выражения значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ). Поэтому, .
Переходим ко второму результату. Пусть m
– целое положительное нечетное, а n
– натуральное нечетное. Для всех значений переменных из ОДЗ, для которых значение выражения A
неотрицательно, , а для которых отрицательно,
Аналогично доказывается следующий результат для целых отрицательных и нечетных m
и натуральных нечетных n
. Для всех значений переменных из ОДЗ, для которых значение выражения A положительно, , а для которых отрицательно,
Наконец, последний результат. Пусть m
– целое четное, n
– любое натуральное. Для всех значений переменных из ОДЗ, для которых значение выражения A
положительно (если m<0
) или неотрицательно (если m>0
), . А для которых отрицательно, . Таким образом, если m
– целое четное, n
– любое натуральное, то для любого набора значений переменных из ОДЗ для выражения его можно заменить на .
Список литературы.
- Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
- Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – М.: Просвещение, 2009.- 336 с.: ил.- ISBN 979-5-09-016551-8.
Пришло время разобрать способы извлечения корней . Они базируются на свойствах корней , в частности, на равенстве , которое справедливо для любого неотрицательного числа b.
Ниже мы по очереди рассмотрим основные способы извлечения корней.
Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п.
Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители.
Отдельно стоит остановиться на , что возможно для корней с нечетными показателями.
Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня.
Приступим.
Использование таблицы квадратов, таблицы кубов и т.д.
В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?
Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99 . Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83 . Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99 . На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889 , которое является квадратом числа 83 .
Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.
Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.
Допустим, нам нужно извлечь корень n
-ой степени из числа a
, при этом число a
содержится в таблице n
-ых степеней. По этой таблице находим число b
такое, что a=b n
. Тогда , следовательно, число b
будет искомым корнем n
-ой степени.
В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683
. Находим число 19 683
в таблице кубов, из нее находим, что это число является кубом числа 27
, следовательно, .
Понятно, что таблицы n -ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.
Разложение подкоренного числа на простые множители
Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем : после его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.
Пусть из натурального числа a извлекается корень n -ой степени, и его значение равно b . В этом случае верно равенство a=b n . Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p 1 , p 2 , …, p m в виде p 1 ·p 2 ·…·p m , а подкоренное число a в этом случае представляется как (p 1 ·p 2 ·…·p m) n . Так как разложение числа на простые множители единственно, то разложение подкоренного числа a на простые множители будет иметь вид (p 1 ·p 2 ·…·p m) n , что дает возможность вычислить значение корня как .
Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p 1 ·p 2 ·…·p m) n , то корень n -ой степени из такого числа a нацело не извлекается.
Разберемся с этим при решении примеров.
Пример.
Извлеките квадратный корень из 144 .
Решение.
Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=12 2 , откуда понятно, что квадратный корень из 144 равен 12 .
Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.
Разложим 144
на простые множители:
То есть, 144=2·2·2·2·3·3
. На основании с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2) 2 ·3 2 =(2·2·3) 2 =12 2
. Следовательно, .
Используя свойства степени и свойства корней , решение можно было оформить и немного иначе: .
Ответ:
Для закрепления материала рассмотрим решения еще двух примеров.
Пример.
Вычислите значение корня .
Решение.
Разложение на простые множители подкоренного числа 243
имеет вид 243=3 5
. Таким образом, .
Ответ:
Пример.
Является ли значение корня целым числом?
Решение.
Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.
Имеем 285 768=2 3 ·3 6 ·7 2 . Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.
Ответ:
Нет.
Извлечение корней из дробных чисел
Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде как p/q . Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби : корень из дроби равен частному от деления корня из числителя на корень из знаменателя.
Разберем пример извлечения корня из дроби.
Пример.
Чему равен квадратный корень из обыкновенной дроби 25/169 .
Решение.
По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5
, а квадратный корень из знаменателя равен 13
. Тогда . На этом извлечение корня из обыкновенной дроби 25/169
завершено.
Ответ:
Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.
Пример.
Извлеките кубический корень из десятичной дроби 474,552 .
Решение.
Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000
. Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13=
(2·3·13) 3 =78 3
и 1 000=10 3
, то
и
. Осталось лишь завершить вычисления
.
Ответ:
.
Извлечение корня из отрицательного числа
Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a
и нечетного показателя корня 2·n−1
справедливо . Это равенство дает правило извлечения корней нечетной степени из отрицательных чисел
: чтобы извлечь корень из отрицательного числа нужно извлечь корень из противоположного ему положительного числа, и перед полученным результатом поставить знак минус.
Рассмотрим решение примера.
Пример.
Найдите значение корня .
Решение.
Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью:
. Применяем правило извлечения корня из обыкновенной дроби:
. Осталось вычислить корни в числителе и знаменателе полученной дроби:
.
Приведем краткую запись решения: .
Ответ:
.
Порязрядное нахождение значения корня
В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n -ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.
На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.
Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5 . Имеем 0 2 =0<5 , 10 2 =100>5 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.
Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.
Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .
Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.
Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9
, вычисляя соответственно 0 2 , 1 2 , …, 9 2
до того момента, пока не получим значение, большее подкоренного числа 5
. Все эти вычисления удобно представлять в виде таблицы:
Так значение разряда единиц равно 2
(так как 2 2 <5
, а 2 3 >5
). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9
, сравнивая полученные значения с подкоренным числом 5
:
Так как 2,2 2 <5
, а 2,3 2 >5
, то значение разряда десятых равно 2
. Можно переходить к нахождению значения разряда сотых:
Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .
Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.
Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186 , таким образом, старшим разрядом является разряд десятков.
Определим его значение.
Так как 10 3 <2 151,186
, а 20 3 >2 151,186
, то значение разряда десятков равно 1
. Переходим к единицам.
Таким образом, значение разряда единиц равно 2
. Переходим к десятым.
Так как даже 12,9 3
меньше подкоренного числа 2 151,186
, то значение разряда десятых равно 9
. Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.
На этом этапе найдено значение корня с точностью до сотых: .
В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.
Список литературы.
- Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
- Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
- Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).
\(\sqrt{a}=b\), если \(b^2=a\), где \(a≥0,b≥0\)
Примеры:
\(\sqrt{49}=7\), так как \(7^2=49\)
\(\sqrt{0,04}=0,2\),так как \(0,2^2=0,04\)
Как извлечь квадратный корень из числа?
Чтобы извлечь квадратный корень из числа, надо задать себе вопрос: какое число в квадрате даст выражение под корнем?
Например . Извлеките корень: а)\(\sqrt{2500}\); б) \(\sqrt{\frac{4}{9}}\); в) \(\sqrt{0,001}\); г) \(\sqrt{1\frac{13}{36}}\)
а) Какое число в квадрате даст \(2500\)?
\(\sqrt{2500}=50\)
б) Какое число в квадрате даст \(\frac{4}{9}\) ?
\(\sqrt{\frac{4}{9}}\) \(=\)\(\frac{2}{3}\)
в) Какое число в квадрате, даст \(0,0001\)?
\(\sqrt{0,0001}=0,01\)
г) Какое число в квадрате даст \(\sqrt{1\frac{13}{36}}\)? Чтобы дать ответ на вопрос, нужно перевести в неправильную.
\(\sqrt{1\frac{13}{36}}=\sqrt{\frac{49}{16}}=\frac{7}{6}\)
Замечание : Хотя \(-50\), \(-\frac{2}{3}\) , \(-0,01\),\(- \frac{7}{6}\) , тоже отвечают на поставленные вопросы, но их не учитывают, так как квадратный корень – всегда положителен.
Главное свойство корня
Как известно, в математике у любого действия есть обратное. У сложения – вычитание, у умножения – деление. Обратное действие возведению в квадрат - извлечение квадратного корня. Поэтому эти действия компенсируют друг друга:
\((\sqrt{a})^2=a\)
Это и есть главное свойства корня, которое чаще всего используется (в том числе и в ОГЭ)
Пример . (задание из ОГЭ). Найдите значение выражения \(\frac{(2\sqrt{6})^2}{36}\)
Решение : \(\frac{(2\sqrt{6})^2}{36}=\frac{4 \cdot (\sqrt{6})^2}{36}=\frac{4 \cdot 6}{36}=\frac{4}{6}=\frac{2}{3}\)
Пример . (задание из ОГЭ). Найдите значение выражения \((\sqrt{85}-1)^2\)
Решение:
Ответ: \(86-2\sqrt{85}\)Конечно, при работе с квадратным корнем нужно использовать и другие .
Пример
. (задание из ОГЭ). Найдите значение выражения \(5\sqrt{11} \cdot 2\sqrt{2}\cdot \sqrt{22}\)
Решение:
Ответ: \(220\)
4 правила про которые всегда забывают
Корень не всегда извлекается
Пример : \(\sqrt{2}\),\(\sqrt{53}\),\(\sqrt{200}\),\(\sqrt{0,1}\) и т.д. – извлечь корень из числа не всегда возможно и это нормально!
Корень из числа, тоже число
Не надо относится к \(\sqrt{2}\), \(\sqrt{53}\), как-то особенно. Это числа, да не целые, да , но не все в нашем мире измеряется в целых числах.
Корень извлекается только из неотрицательных чисел
Поэтому в учебниках вы не увидите вот таких записей \(\sqrt{-23}\),\(\sqrt{-1}\),и т.п.
Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.
Число c является n -ной степенью числа a когда:
Операции со степенями.
1. Умножая степени с одинаковым основанием их показатели складываются:
a m ·a n = a m + n .
2. В делении степеней с одинаковым основанием их показатели вычитаются:
3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:
(abc…) n = a n · b n · c n …
4. Степень дроби равняется отношению степеней делимого и делителя:
(a/b) n = a n /b n .
5. Возводя степень в степень, показатели степеней перемножают:
(a m) n = a m n .
Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.
Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .
Операции с корнями.
1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:
2. Корень из отношения равен отношению делимого и делителя корней:
3. При возведении корня в степень довольно возвести в эту степень подкоренное число:
4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:
5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:
Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:
Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .
Например . a 4:a 7 = a 4 - 7 = a -3 .
Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.
Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.
Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.
Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .
Что такое квадратный корень?
Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")
Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение - есть и вычитание. Есть умножение - есть и деление. Есть возведение в квадрат... Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня ) в математике обозначается вот таким значком:
Сам значок называется красивым словом "радикал ".
Как извлечь корень? Это лучше рассмотреть на примерах .
Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т.е:
А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:
Уловили, что такое квадратный корень? Тогда считаем примеры :
Ответы (в беспорядке): 6; 1; 4; 9; 5.
Решили? Действительно, уж куда проще-то?!
Но... Что делает человек, когда видит какое-нибудь задание с корнями?
Тосковать начинает человек... Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень ...
Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах...
Пунктик первый. Корни надо узнавать в лицо!
Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию - возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться...
В этом и есть сложность извлечения корней . Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком - да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.
Этот сложный творческий процесс - подбор ответа - сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 - вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да...
Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый - выучить таблицу квадратов. Это здорово поможет решать примеры. Второй - решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.
И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно...
Итак, что такое квадратный корень и как извлекать корни - думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.
Пунктик второй. Корень, я тебя не знаю!
Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.
Попробуем вычислить вот такой корень:
Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.
Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот... Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт - сами узнаете.
Такая же история будет с любым отрицательным числом. Отсюда вывод:
Выражение, в котором под знаком квадратного корня стоит отрицательное число - не имеет смысла ! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:
Квадратные корни из отрицательных чисел извлечь нельзя!
Зато из всех остальных - можно. Например, вполне можно вычислить
На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить... Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!
Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:
Ничего страшного. Всё то же самое. Корень квадратный из двух - это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное... Вот оно:
Что интересно, эта дробь не кончается никогда... Такие числа называются иррациональными. В квадратных корнях это - самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными . Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:
Если при решении примера у вас получилось что-то неизвлекаемое, типа:
то так и оставляем. Это и будет ответ.
Нужно чётко понимать, что под значками
Конечно, если корень из числа извлекается ровно , вы обязаны это сделать. Ответ задания в виде, например
вполне себе полноценный ответ.
И, конечно, надо знать на память приблизительные значения:
Это знание здорово помогает оценить ситуацию в сложных заданиях.
Пунктик третий. Самый хитрый.
Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах... Разберёмся с этим пунктиком как следует!
Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!
Какое число даст в квадрате 4? Ну два, два - слышу недовольные ответы...
Верно. Два. Но ведь и минус два даст в квадрате 4... А между тем, ответ
правильный, а ответ
грубейшая ошибка. Вот так.
Так в чём же дело?
Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит... Это тоже корень квадратный из четырёх.
Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: из числа а - это неотрицательное число, квадрат которого равен а . Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни - арифметические . Хотя особо об этом не упоминается.
Ну ладно, это понятно. Это даже и лучше - не возиться с отрицательными результатами... Это ещё не путаница.
Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.
Уравнение простое, пишем ответ (как учили):
Такой ответ (совершенно правильный, кстати) - это просто сокращённая запись двух ответов:
Стоп-стоп! Чуть выше я написал, что квадратный корень - число всегда неотрицательное! А здесь один из ответов - отрицательный ! Непорядок. Это первая (но не последняя) проблемка, которая вызывает недоверие к корням... Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:
Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня . Теперь наглядно видно, что сам корень (в скобках) - число всё равно неотрицательное! А знаки - это результат решения уравнения . Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.
Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:
Потому, что это - арифметический квадратный корень .
Но если вы решаете какое-нибудь квадратное уравнение, типа:
то всегда получается два ответа (с плюсом и минусом):
Потому, что это - решение уравнения.
Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор... извините, камни!)
Всё это - в следующих уроках.
Если Вам нравится этот сайт...
Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)
можно познакомиться с функциями и производными.