– составная гемоглобина. Этот сложный белок входит в эритроциты, известные так же как красные кровяные тельца. Без них, собственно, кровь не была бы алой, да и жизни бы не было.
Эритроциты транспортируют по организму углекислый газ и кислород. Они необходимы для жизнедеятельности. А для чего еще необходимо железо , каковы его свойства и стоимость в прямом и переносном смыслах?
Химические и физические свойства железа
Дотрагивались до железа в прохладном помещении? Холод от прикосновения к металлу – результат его высокой теплопроводности. Материал моментально забирает энергию тела, передавая ее окружающей среде. В результате, человеку становится холодно.
Электропроводность железа тоже на высоте. Металл с легкостью передает ток благодаря свободным электронам в атоме. В нем 7 слоев. На последних 2-х расположены 8 электронов. При возбуждении все они могут быть валентными, то есть способными образовать новые связи.
Внешне металл железо серебристо-серый. Встречаются самородные формы. Чистое железо пластичное и ковкое. У выраженный металлический блеск и средняя твердость – 4 балла по . 10 баллов – показатель самого твердого на земле камня алмаз, а 1-им баллом отмечен тальк.
Железо – элемент средней тугоплавкости. Закипает металл при 2860-ти градусах, а размягчается при 1539-ти. В таком состоянии материал теряет ферромагнитные свойства. Они присущи лишь твердому состоянию железа. Элемент становится магнитом, попадая в поле.
Но, интереснее то, что после его исчезновения, металл еще долгое время остается магнитом. Такая особенность обусловлена все теми же свободными электронами в структуре атома. Перемещаясь, частицы меняют его строение и свойства.
Железо – химический элемент , легко вступающий в реакции с бромом, фтором, хлором и другими галогенами. Это элементы 17-ой группы таблицы Менделеева. При обычных условиях протекает и взаимодействие с кислородом.
Теперь, о реакциях нагрева. При сжигании металла образуются его оксиды. Их несколько видов: — 2FeO, 2Fe 2 O 3 , Fe 3 O 4 . Какой именно получится, зависит от пропорций исходных элементов и условий совмещения. Свойства оксидов разнятся.
Нагрев запускает и реакцию с . Для нее нужно 6 молей железа и один моль газа. Выход – 2 моля нитрида 26-го элемента. Его фосфид формируется уже в сочетании с фосфором. Еще одно простое вещество, объединяющееся с феррумом – . Получается, естественно, сульфид. Протекает реакция присоединения.
Из сложных веществ, то есть состоящих из молекул, железо взаимодействует с кислотами. Металл вытесняет из них водород. Получается замещение. Так, и взаимодействия с серной кислотой выходит сульфат феррума и чистый водород.
Возможны и реакции с . Их железо восстанавливает. Иными словами, 26-ой элемент выделяет из веществ менее активный металл. Соединив феррум, к примеру, с сульфатом меди, получают сульфат уже железа. остается в первозданном виде.
Применение железа
Где железо применяется, вытекает из его свойств. Ферромагнитоность пригождается при изготовлении сувениров и промышленных установок. Иными словами, из металла делают магниты, как для холодильников, так и для больших производств. Прочность материала, твердость – повод использовать его для изготовления оружия, брони.
Особым шиком считаются модели из метеоритного железа . В космических телах свойства феррума усилены. Поэтому, ножи и доспехи получаются особенно острыми, прочными. Признаки железа метеоритного заметили еще в Древнем Риме.
Известны и сплавы железа , в частности, чугун и сталь. Из них отливают вещи бытового, повседневного характера, к примеру, оградки, беседки, фурнитуру. Используют феррума и для промышленных целей. Интересно, что состав у стали и чугуна один, пропорции разные. И там, и там сливаются железо с углеродом . В стали газа меньше 1,7%. В чугуне углерода от 1,7 до 4,5%.
Углерод в сплавах железа играет роль упрочняющего элемента. Он снижает подверженность смеси коррозии и делает материал термоустойчивым. К сталям примешивают и иные добавки. Не зря существуют разные марки сплава. С , к примеру, производят стойкую к ударам и, при этом, пластичную сталь.
В виде хлорида 26-ой элемент используют для очистки воды. Пригождается металл и в медицине. Лечение железом необходимо при анемии. Это недостаток красных кровяных телец и металла в их составе. Препараты железа выписывают, так же, больным туберкулезом, радикулитом, страдающим от судорог и кровотечений из носа.
26-ой элемент необходим и для нормального функционирования щитовидной железы. Обычно, ее дисфункцию связывают с дефицитом . Однако, не он один обеспечивает здоровье железы.
Немало феррума и в клетках печени. Там металл способствует нейтрализации вредных веществ, токсинов. Для поддержания в организм человека должны поступать не меньше 20-ти миллиграммов железа в сутки.
Добыча железа
Железо – распространенный металл. В природе немало минералов, в основе которых лежит 26-ой элемент. Больше всего феррума в и . Из них-то и удаляют железо .
Проводится реакция восстановления металла. Для того нужен кокс, то есть соединение углерода. Взаимодействие протекает при температуре в 2000 градусов Цельсия, в доменных .
Без доменных печей обходятся при восстановлении феррума чистым водородом. Потребуются уже шахтные печи. Так называют модели вытянутые по вертикали.
Рабочее пространство аппарата подобно цилиндру или конусу. В них помещают измельченную руду железа , смешанную со специальной . Потом, добавляют водород. Итог все тот же – чистый феррум.
Цена железа
Стоимость металла зависит от вида продукции. Большинство вещей делаются из сплавов феррума, к примеру, кровельные материалы. Покрытия для крыш, как правило, листовые. Цена за квадратный метр варьируется от 300-от до 600-от с лишним рублей в зависимости от толщины железа.
Кровельные листы рифленые, сложной геометрии и особого состава. Простые пласты стоят дешевле. Есть предложения купить 30 листов 2,5 на 1,3 метра за 1000 рублей. Толщина – 1,5 миллиметра.
Чистый элемент в таблетках стоит около 1600 рублей за 180-200 штук. Если же приобретается готовое изделие, в которое вложен ручной труд, бывает сложно уложиться и в десятки, сотни тысяч. Яркий пример – кованная продукция по индивидуальным заказам.
За необычные ворота, мебель, вазы, кузнецы «срывают» немалый куш. Большую часть цены составляет не материал, а человеческий труд, воплощение в жизнь задумки.
Что касается стоимости железосодержащей руды, за тонну в России просят около 40-ка американских долларов. Это ценник за сырье с 60-процентным содержанием феррума. Когда выделяют чистый порошок 26-го элемента, за 1000 килограммов просят уже не меньше 560-600-от долларов США.
Большинство фирм торгуют оптом. Предложений купить только одно кило металла, редки. 1000 граммов обходится примерно в 1-1,5 доллара. Некоторые компании фасуют порошок феррума в мешки по 5, 10, 25 килограммов. Объявления о продаже размещены в интернете.
ЖЕЛЕЗО (Ferrum, Fe ) - элемент VIII группы периодической системы Д. И. Менделеева; входит в состав дыхательных пигментов, в т. ч. гемоглобина, участвует в процессе связывания и переноса кислорода к тканям в организме животных и человека; стимулирует функцию кроветворных органов; применяется в качестве лекарственного средства при анемических и некоторых других патологических состояниях. Радиоактивный изотоп 59 Fe используется в качестве радиоактивного индикатора в клин, лабораторных исследованиях. Порядковый номер 26, ат. вес 55,847.
В природе обнаружены 4 стабильных изотопа Ж. с массовыми числами 54 (5,84%), 56 (91,68%), 57 (2,17%) и 58 (0,31%).
Железо встречается всюду, как на Земле, особенно в ее ядре, так и в метеоритах. В земной коре содержится 4,2 весовых, или 1,5 атомных, процента Ж. Содержание Ж. в каменных метеоритах составляет в среднем 23%, а иногда доходит до 90% (такие метеориты называют железными). В виде сложных органических соединений Ж. входит в состав растительных и животных организмов.
Ж. входит в состав многих минералов, представляющих собой оксиды железа (красный железняк- Fe 2 O 3 , магнитный железняк - FeO-Fe 2 O 3 , бурый железняк - 2Fe 2 O 3 -3H 2 O), или карбонаты (сидерит - FeCO 3), либо сернистые соединения (железный колчедан, магнитный колчедан), либо, наконец, силикаты (напр., оливин и др.). Ж. обнаруживается в грунтовых водах и водах различных водоемов. В морской воде Ж. содержится в концентрации 5 10 -6 %.
В технике Ж. применяется в виде сплавов с другими элементами, которые существенно изменяют его свойства. Наибольшее значение имеют сплавы Ж. с углеродом.
Физико-химические свойства железа и его соединений
Чистое Ж. - блестящий белый с сероватым оттенком ковкий металл; t° пл 1539 ± 5°, t° кип ок. 3200°; уд. вес 7,874; обладает по сравнению с другими чистыми металлами наивысшими ферромагнитными свойствами, т. е. способностью приобретать свойства магнита под влиянием внешнего магнитного поля.
Известны две кристаллические модификации Ж.: альфа- и гамма-железо. Первая, альфа-модификация, устойчива ниже 911° и выше 1392°, вторая, гамма-модификация, - в интервале температур от 911° до 1392°. При температурах выше 769° альфа-железо немагнитно, а ниже 769° - магнитно. Немагнитное альфа-железо иногда называют бета-железом, а высокотемпературную альфа-модификацию дельта-железом. Ж. легко взаимодействует с разведенными к-тами (напр., с соляной, серной, уксусной) с выделением водорода и образованием соответствующих закисных солей Ж., т. е. солей Fe (II) . Взаимодействие Ж. с сильно разведенной азотной к-той происходит без выделения водорода с образованием закисной азотнокислой соли Ж. - Fe(NO 3) 2 и азотноаммонийной соли - NH 4 NO 3 . При взаимодействии Ж. с конц. азотной к-той образуется окисная соль Ж., т. е. соль Fe (III), - Fe(NO 3) 3 , причем одновременно выделяются оксиды азота.
В сухом воздухе Ж. покрывается тонкой (толщиной ок. 3 нм) пленкой окиси (Fe 2 O 3), но не ржавеет. При высокой температуре в присутствии воздуха Ж. окисляется, образуя железную окалину - смесь закиси (FeO) и окиси (Fe 2 O 3) Ж. В присутствии влаги и воздуха Ж. подвергается коррозии; оно окисляется с образованием ржавчины, к-рая представляет собой смесь гидратированных оксидов Ж. Для защиты Ж. от ржавления его покрывают тонким слоем других металлов (цинка, никеля, хрома и др.) или масляными красками и лаками либо добиваются образования на поверхности Ж. тонкой пленки закись-окиси - Fe 3 O 4 (воронение стали).
Ж. принадлежит к элементам с переменной валентностью, и поэтому его соединения способны принимать участие в окислительно-восстановительных реакциях. Известны соединения двух-, трех- и шестивалентного Ж.
Наиболее устойчивыми являются соединения двух- и трехвалентного Ж. . Кислородные соединения Ж. - закись (FeO) и окись (Fe 2 O 3) - обладают основными свойствами и с к-тами образуют соли. Гидраты этих окислов Fe(OH) 2 , Fe(OH) 3 нерастворимы в воде. Соли закисного, т. е. двухвалентного, Ж. (FeCl 2 , FeSO 4 и т. д.), называемые солями Fe (II) или ферросолями, в безводном состоянии бесцветны, а при наличии кристаллизационной воды или в растворенном состоянии имеют голубовато-зеленый цвет;, диссоциируют они с образованием ионов Fe 2+ . Кристаллогидрат двойной сернокислой соли аммония и двухвалентного Ж. (NH 4) 2 SO 4 -FeSO 4 -6Н 2 O носит название соли Мора. Чувствительной реакцией на соли Fe (II) является образование с р-ром K 3 Fe(CN) 6 осадка турнбулевой сини - Fe 3 2 .
Соли окисного, т. е. трехвалентного Ж. или Fe(III), называемые солями Fe(III) или феррисолями, окрашены в желто-бурый или красно-бурый цвет, напр, хлорное железо, поступающее в продажу в виде желтого гигроскопического кристаллогидрата FeCl 3 -6H 2 O. Широко распространены двойные сернокислые соли Fe (III), называемые железными квасцами, напр, железо-аммонийные квасцы (NH 4) 2 SO 4 Fe 2 (SO 4) 3 24Н 2 O. В р-ре соли Fe (III) диссоциируют с образованием ионов Fe 3+ . Чувствительными реакциями на соли Fe (III) являются: 1) образование осадка берлинской лазури Fe 4 3 с р-ром K 4 Fe(CN) 6 и 2) образование красного роданового железа Fe(CNS) 3 при добавлении роданистых солей (NH 4 CNS или KCNS).
Соединения шестивалентного Ж. представляют собой соли железной к-ты (ферраты K2FeO4, BaFeO4). Соответствующая этим солям железная к-та (H2FeO4) и ее ангидрид нестойки и в свободном состоянии не получены. Ферраты являются сильными окислителями, они нестабильны и легко разлагаются с выделением кислорода.
Существует большое количество комплексных соединений Ж. Напр., при добавлении к солям закисного Ж. цианистого калия вначале образуется осадок цианистого Ж. Fe(CN) 2 , который затем при избытке KCN вновь растворяется с образованием K 4 Fe(CN)6 [гексациано- (II) феррат калия, железисто-синеродистый калий, или феррицианид калия]. Другим примером может служить K 3 Fe(CN) 6 [гексациано-(III)феррат калия, железосинеродистый калий, или ферроцианид калия] и др. Ферроцианид дает в р-ре ион Fe(CN) 4 - , а феррицинид - ион Fe(CN) 6 3- . Ж., содержащееся в этих анионах, не дает качественных реакций на ионы железа Fe 3+ и Fe 2+ . Ж. легко образует комплексные соединения со многими органическими к-тами, а также с азотистыми основаниями. Образование окрашенных комплексных соединений железа с а, альфа1-дипиридилом или с о-фенантролином лежит в основе очень чувствительных методов обнаружения й количественного определения малых количеств Ж. Вещества типа гема (см. Гемоглобин) биогенного происхождения являются также комплексными соединениями Ж.
С окисью углерода Ж. дает летучие соединения - карбонилы. Карбонил Ж. Fe(CO) 5 называется пентакарбонилом Ж. и используется для получения наиболее чистого, свободного от каких-либо примесей Ж. для целей получения хим. катализаторов, а также для некоторых электротехнических целей.
Железо в организме человека
Организм взрослого человека содержит в среднем 4-5 г Fe, из которых ок. 70% находится в составе гемоглобина , (см.), 5-10%- в составе миоглобина (см.), 20-25% в виде резервного Ж. и не более 0,1% - в плазме крови. Нек-рое количество Ж. находится в составе различных органических соединений внутриклеточно. Ок. 1% Ж. входит также в состав ряда дыхательных ферментов (см. Дыхательные пигменты , Дыхательные ферменты , Окисление биологическое), катализирующих процессы дыхания в клетках и тканях.
Ж., обнаруживаемое в плазме крови, является транспортной формой Ж., к-рое связано с белком трансферрином, представляющим собой бета-глобулины и, возможно, альфа-глобулины и альбумины. Теоретически с 1 мг белка может быть связано 1,25 мкг Ж., т. е. в общей сложности в плазме в связанном состоянии постоянно может находиться ок. 3 мг Ж. Однако на самом деле трансферрин насыщен Ж. лишь на 20-50% (в среднем на одну треть). Дополнительное количество Ж., к-рое в определенных условиях может связаться с трансферрином, определяет ненасыщенную железосвязывающую способность (НЖСС) крови; общее количество Ж., к-рое может быть связано трансферрином, определяет общую железосвязывающую способность (ОЖСС) крови. В сыворотке крови содержание Ж. определяют по Вальквисту (В. Vahlquist) в модификации Хагберга (В. Hagberg) и Е. А. Ефимовой. Метод основан на том, что железобелковые комплексы в плазме крови в кислой среде диссоциируют с высвобождением Ж. Белки осаждают, а в безбелковом фильтрате Fe (III) переводят в Fe (II), образующее окрашенный растворимый комплекс с о-фенантролином, интенсивность окраски к-рого пропорциональна количеству Ж. в р-ре. Для определения берут 0,3 мл негемолизированной сыворотки крови, расчет производят по калибровочной кривой.
Железосвязывающую способность сыворотки крови определяют по Шаде (A. Schade) в модификации Рата (С. Rath) и Финча (С. Finch). Метод основан на том, что при взаимодействии бета-глобулинов и двухвалентного Ж. образуется комплекс оранжево-красного цвета. Поэтому при добавлении ферросолей (обычно соли Мора) к сыворотке крови нарастает интенсивность этой окраски, к-рая резко стабилизируется в точке насыщения белка. По количеству Ж., необходимого для насыщения белка, судят о НЖСС. Эта величина, суммированная с количеством Ж. в сыворотке крови, отражает ОЖСС.
Содержание Ж. в плазме крови подвержено суточным колебаниям- оно снижается ко второй половине дня. Концентрация Ж. в плазме крови зависит также от возраста: у новорожденных она равна 175 мкг%, у детей в возрасте 1 года - 73 мкг%; затем концентрация Ж. вновь увеличивается до 110-115 мкг% и до 13 лет существенно не меняется. У взрослых людей отмечаются различия в концентрации Ж. в сыворотке крови в зависимости от пола: содержание Ж. у мужчин составляет 120 мкг%, а у женщин - 80 мкг%. В цельной крови это различие выражено менее резко. ОЖСС нормальной сыворотки крови составляет 290-380 мкг%. С мочой у человека за сутки выводится 60-100 мкг Ж.
Отложение железа в тканях
Ж., откладывающееся в тканях организма, может иметь экзогенное и эндогенное происхождение. Экзогенный сидероз наблюдается при некоторых профессиях как профессиональная вредность, в частности у шахтеров, занятых на разработках красного железняка, и у электросварщиков. В этих случаях происходит отложение оксидов Fe (III) (Fe 2 O 3) в легких, иногда с образованием сидеротических узелков, диагностируемых посредством рентгенографии. Гистологически узелки представляют собой скопление содержащей Ж. пыли в просвете альвеол, в слущенных альвеолярных клетках, в межальвеолярных перегородках, в адвентиции бронхов с развитием вокруг соединительной ткани. У электросварщиков количество Ж., откладывающегося в легких, обычно невелико; частички его преимущественно меньше 1 мкм; у шахтеров наблюдаются массивные отложения Ж., количество к-рого в обоих легких может достигать 45 г и составлять 39,6% веса золы, остающейся после сгорания легкого. Чистый сидероз легких, напр, у электросварщиков, не сопровождается пневмосклерозом и нарушением трудоспособности; у шахтеров, однако, обычно наблюдается сидеро-силикоз с развитием пневмосклероза (см.).
Экзогенный сидероз глазного яблока наблюдается при внедрении в глаз железных осколков, стружек и т. п.; при этом металлическое Ж. переходит в двууглекислое, затем в гидрат окиси Ж. и откладывается в отростках цилиарного тела, эпителии передней камеры, капсуле хрусталика, эписклеральной ткани, сетчатке и зрительном нерве, где его можно обнаружить при помощи соответствующих микрохим. реакций. Экзогенный местный сидероз может наблюдаться вокруг железных осколков., попавших в ткани при бытовой и боевой травме (осколки гранат, снарядов и т. п.).
Источником эндогенного сидероза в подавляющем большинстве случаев служит гемоглобин при вне- и внутрисосудистом его разрушении. Одним из конечных продуктов распада гемоглобина является железосодержащий пигмент гемосидерин, который откладывается в органах и тканях. Гемосидерин был открыт в 1834 г. И. Мюллером, однако термин «гемосидерин» был предложен Нейманном (A. Neumann) лишь позднее, в 1888 г. Гемосидерин образуется при расщеплении гема. Он является полимером ферритина (см.) [Граник (S. Granick)]. Химически гемосидерин представляет собой агрегат гидроокиси Fe (III), более или менее прочно соединенный с белками, мукополисахаридами и липидами клетки. Образование гемосидерина происходит в клетках как мезенхимальной, так и эпителиальной природы. Эти клетки
В. В. Серов и В. С. Пауков предложили называть сидеробластами. В сидеросомах сидеробластов происходит синтез гранул гемосидерина. Микроскопически гемосидерин имеет вид зерен от желтоватого до золотисто-коричневого цвета, расположенных большей частью внутри клеток, но иногда и внеклеточно. Гранулы гемосидерина содержат до 35% Ж.; гемосидерин никогда не образует кристаллических форм.
В связи с тем что источником гемосидерина в большинстве случаев является гемоглобин, очаговые отложения последнего могут наблюдаться в любом месте человеческого тела, где имело место кровоизлияние (см. Гемосидероз). При гемосидерозе в местах отложения гемосидерина выявляется SH-ферри-тин (сульфгидрильная активная форма), который обладает вазопаралитическими свойствами. Особенно большие отложения гемосидерина, возникающего из ферритина вследствие нарушения клеточного метаболизма Ж., наблюдаются при гемохроматозе (см.); при этом в печени количество депонированного Ж. часто превышает 20-30 г. Отложения Ж. при гемохроматозе, помимо печени, наблюдаются в поджелудочной железе, почках, миокарде, органах ретикулоэндотелиальной системы, иногда слизистых железах трахеи, в щитовидной железе, мышцах и эпителии языка и т. д.
Помимо отложений гемосидерина, иногда наблюдается импрегнация Ж. (ожелезнение) эластического каркаса легких, эластических мембран сосудов легкого при бурой индурации или сосудов мозга в окружности очага кровоизлияния (см. Бурое уплотнение легких). Наблюдается также ожелезнение отдельных мышечных волокон в матке, нервных клеток в головном мозге при некоторых психических заболеваниях (идиотии, раннем и старческом слабоумии, атрофии Пика, некоторых гиперкинезах). Указанные образования пропитываются коллоидным Ж., и обнаружить ожелезнение можно лишь при помощи специальных реакций.
Для обнаружения ионизированного Ж. в тканях наиболее широко используются реакция образования турнбулевой сини по Тирманну - Шмельцеру для выявления Fe (II) и реакция образования берлинской лазури [метод Перльса с использованием Fe (III)].
Реакция образования турнбулевой сини производится следующим образом: приготовленные срезы помещают на 1- 24 часа в 10% р-р сернистого аммония для переведения всего Ж. в двухвалентное сернистое Ж. Затем тщательно прополосканные в дистиллированной воде срезы переносят на 10-20 мин. в свежеприготовленную смесь из равных частей 20% р-ра железосинеродистого калия и 1% р-ра соляной к-ты. Ж. окрашивается в ярко-синий цвет; ядра можно докрасить кармином. Для переноски срезов нужно пользоваться только стеклянными иглами.
По методу Перльса срезы помещают на несколько минут в свежеприготовленную смесь из 1 ч. 2% водного р-ра железистосинеродистого калия и 1,5 ч. 1% р-ра соляной к-ты; потом срезы ополаскивают водой и ядра докрашивают кармином. Ж. окрашивается в синий цвет. SH-ферритин выявляют с помощью сульфата кадмия (Н. Д. Клочков).
Библиография: Биохимические методы исследования в клинике, под ред. А. А. Покровского, с. 440, М., 1969; В e р б о л о-в и ч П. А. и У т e ш e в А. Б. Железо в животном организме, Алма-Ата, 1967, библиогр.; Глинка Н. Л. Общая химия, с. 682, Л., 1973; Кассирский И. А. и Алексеев Г. А. Клиническая гематология, с. 168, М., 1970, библиогр.; Левин В. И. Получение радиоактивных изотопов, с. 149, М., 1972; Машковский М. Д. Лекарственные средства, ч. 2, с. 94, М., 1977; Нормальное кроветворение и его регуляция, под ред. Н. А. Федорова, с. 244, М., 1976; Петров В. Н. и Щерба М. М. Выявление, распространенность и география дефицита железа, Клин, мед., т. 50, № 2, с. 20, 1972, библиогр.; P я-бов С. И. и Шостка Г. Д. Молекулярно-генетические аспекты эритропоэза, Л., 1973, библиогр.; Щ ер б а М. М. Железодефицитные состояния, Л., 197 5; Klinische Hamatologie, hrsg. v. H. Be-gemann, S. 295, Stuttgart, 1970; Pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, L., 1975.
Г. E. Владимиров; Г. А. Алексеев (гем.), В. В. Бочкарев (рад.), А. М. Вихерт (пат. ан.), В. В. Чурюканов (фарм.).
Цели урока:
- сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им степени окисления и природы окислителя;
- развивать теоретическое мышление учащихся и их умения прогнозировать свойства вещества, опираясь на знания о его строении;
- развивать понятийное мышление таких операций, как анализ, сравнение, обобщение, систематизация;
- развивать такие качества мышления, как объективность, лаконизм и ясность, самоконтроль и активность.
Задачи урока:
- актуализировать знания учащихся по теме: “Строение атома”;
- организовать коллективную работу учащихся от постановки учебной задачи до конечного результата (составить опорную схему к уроку);
- обобщить материал по теме: “Металлы” и рассмотреть свойства железа и его применение;
- организовать самостоятельную исследовательскую работу в парах по изучению химических свойств железа;
- организовать взаимоконтроль учащихся на уроке.
Тип урока: изучение нового материала.
Реактивы и оборудование:
- железо (порошок, пластина, скрепка),
- сера,
- соляная кислота,
- сульфат меди (II),
- кристаллическая решетка железа,
- плакаты для игры,
- магнит,
- подборка иллюстраций по теме,
- пробирки,
- спиртовка,
- спички,
- ложка для сжигания горючих веществ,
- географические карты.
Структура урока
- Вводная часть.
- Изучение нового материала.
- Сообщение домашнего задания.
- Закрепление изученного материала.
Ход урока
1. Вводная часть
Организационный момент.
Проверка наличия учащихся.
Сообщение темы урока. Запись темы на доске и в тетрадях учащихся.
2. Изучение нового материала
– Как вы думаете, как будет звучать тема нашего сегодняшнего урока?
1. Появление железа в человеческой цивилизации положило начало железному веку.
Откуда же древние люди брали железо в то время, когда еще не умели добывать его из руды? Железо в переводе с шумерского языка – это металл, “капнувший с неба, небесный”. Первое железо, с которым столкнулось человечество, было железом из метеоритов. Впервые доказал, что “железные камни падают с неба”, в 1775 г. русский ученый П.С. Палас, который привез в Петербург глыбу самородного железного метеорита весом 600 кг. Самым крупным железным метеоритом является найденный в 1920 г. в Юго-Западной Африке метеорит “Гоба” весом около 60 т. Вспомним гробницу Тутанхамона: золото, золото. Великолепная работа восхищает, блеск слепит глаза. Но вот что пишет К.Керрам в книге “Боги, гробницы, ученые” о маленьком железном амулете Тутанхамона: “Амулет относится к числу наиболее ранних изделий Египта, и …в гробнице, наполненной чуть ли не до отказа золотом, именно эта скромная находка имела наибольшую с точки зрения истории культуры ценность”. Всего несколько железных изделий было найдено в гробнице фараона, среди них железный амулет бога Гора, небольшой кинжальчик с железным клинком и золотой рукояткой, маленькая железная скамеечка “Урс”.
Ученые предполагают, что именно страны Малой Азии, где проживали племена хеттов, были местом возникновения черной металлургии. В Европу железо пришло из Малой Азии уже в I тыс. до н.э.; так в Европе начался железный век.
Знаменитую булатную сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее изготовления держалась в секрете много веков.
Мне приснилась иная печаль
Про седую дамасскую сталь.
Я увидел, как сталь закалялась,
Как из юных рабов одного
Выбирали, кормили его,
Чтобы плоть его сил набиралась.
Выжидали положенный срок,
А потом раскаленный клинок
В мускулистую плоть погружали,
Вынимали готовый клинок.
Крепче стали, не видел Восток,
Крепче стали и горше печали.
Поскольку булат – это сталь с очень большой твердостью и упругостью, изготовленные из нее изделия обладают способностью не тупиться, будучи остро заточенными. Раскрыл секрет булата русский металлург П.П. Аносов. Он очень медленно охлаждал раскаленную сталь в специальном растворе технического масла, подогретого до определенной температуры; в процессе охлаждения сталь ковалась.
(Демонстрация рисунков.)
Железо – серебристо-серый металл |
![]() Железо – серебристо-серый металл |
![]() Эти гвозди сделаны из железа |
![]() Сталь используется в автомобилестроении |
![]() Сталь используется для изготовления медицинских инструментов |
![]() Сталь используется для изготовления локомотивов |
![]() |
![]() Все металлы подвержены коррозии |
|
2. Положение железа в ПСХЭМ.
Выясняем положение железа в ПСХЭМ, заряд ядра и распределение электронов в атоме.
3. Физические свойства железа.
– Какие физические свойства железа вы знаете?
Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.
Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии (вспомним, что такое коррозия? Демонстрация коррозионного гвоздя) и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.
4. Химические свойства железа.
Исходя из знаний о химических свойствах металлов, как вы думаете, какими химическими свойствами будет обладать железо?
Демонстрация опытов.
- Взаимодействие железа с серой.
Практическая работа.
- Взаимодействие железа с соляной кислотой.
- Взаимодействие железа с сульфатом меди (II).
5. Применение железа.
Беседа по вопросам:
– Как выдумаете, каково распространение железа в природе?
Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.
Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.
– В виде, каких соединений железо встречается в природе?
Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более. Основными железными рудами являются: магнетит – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии; гематит – Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе; лимонит – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму; пирит – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале. (Работа с контурными картами).
– Какова роль железа в жизни человека и растений?
Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .
Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.
Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.
Примерно 90% используемых человечеством металлов – это сплавы на основе железа. Железа выплавляется в мире очень много, примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Сплавы на основе железа универсальны, технологичны, доступны, дешевы. Железу еще долго быть фундаментом цивилизации.
3. Сообщение домашнего материала
14, упр. № 6, 8, 9 (по рабочей тетради к учебнику О.С Габриелян “Химия 9”, 2003 г.).
4. Закрепление изученного материала
- Используя опорную схему , записанную на доске, сделайте вывод: что же представляет собой железо и каковы его свойства?
- Графический диктант (заранее приготовить листочки с начерченной прямой, разделенной на 8 отрезков и пронумерованной соответственно вопросам диктанта. Отметить шалашиком “^” на отрезке номер положения, которое считается верным).
Вариант 1.
- Железо – это активный щелочной металл.
- Железо легко куется.
- Железо входит в состав сплава бронзы.
- На внешнем энергетическом уровне атома железа 2 электрона.
- Железо взаимодействует с разбавленными кислотами.
- С галогенами образует галогениды со степенью окисления +2.
- Железо не взаимодействует с кислородом.
- Железо можно получить путем электролиза расплава его соли.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Вариант 2.
- Железо – это металл серебристо-белого цвета.
- Железо не обладает способностью намагничиваться.
- Атомы железа проявляют окислительные свойства.
- На внешнем энергетическом уровне атома железа 1 электрон.
- Железо вытесняет медь из растворов ее солей.
- С галогенами образует соединения со степенью окисления +3.
- С раствором серной кислоты образует сульфат железа (III).
- Железо не подвергается коррозии.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
После выполнения задания учащиеся меняются своими работами и проверяют их (ответы к работам вывешены на доске, или показать через проектор).
Критерии отметки:
- “5” – 0 ошибок,
- “4” – 1-2 ошибки,
- “3” – 3-4 ошибки,
- “2” – 5 и больше ошибок.
Используемая литература
- Габриелян О.С. Химия 9 класс. – М.: Дрофа, 2001.
- Габриелян О.С. Книга для учителя. – М.: Дрофа, 2002.
- Габриелян О.С. Химия 9 класс. Рабочая тетрадь. – М.: Дрофа, 2003.
- Индустрия образования. Сборник статей. Выпуск 3. – М.: МГИУ, 2002.
- Малышкина В. Занимательная химия. – Санкт-Петербург, “Тригон”, 2001.
- Программно-методические материалы. Химия 8-11 классы. – М.: Дрофа, 2001.
- Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения. – М.: Химия, 1995.
- Я иду на урок Химии. Книга для учителя. – М.: “Первое сентября”, 2000.
Приложения
Знаете ли вы, что?
Железо – один из важнейших элементов жизни. Кровь содержит железо, и именно оно определяет цвет крови, а также ее основное свойство – способность связывать и отдавать кислород. Такой способностью обладает комплексное соединение – гем – составная часть молекулы гемоглобина. Кроме гемоглобина железо в нашем организме есть еще в миоглобине – белке, запасающем кислород в мышцах. Есть также железосодержащие ферменты.
Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет. Это знаменитая Кутубская колонна высотой около семи метров и массой 6.5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. До н. э. Ржавление железа – образование метагидроксида железа – связано с взаимодействием его с влагой и кислородом воздуха.
Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.
В 1934 г. в "Горном журнале" появилась статья "Улучшение железа и стали посредством...ржавления в земле". Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.
Гематит
Гематит, или красный железняк – основная руда главного металла современности – железа. Содержание железа достигает в нем 70%. Гематит известен с давних пор. В Вавилоне и Древнем Египте он использовался в украшениях, для изготовления печатей, наряду с халцедоном служил излюбленным материалом в качестве резного камня. У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою. В древности и в Средние века гематит слыл лекарством, останавливающим кровь. Порошок из этого минерала издревле использовали для золотых и серебряных изделий.
Название минерала происходит от греческого дета – кровь, что связано с вишневым или сургучно-красным цветом порошка этого минерала.
Важной особенностью минерала является способность стойко хранить цвет и передавать его другим минералам, в которые попадает хотя бы небольшая примесь гематита. Розовый цвет гранитных колонн Исаакиевского собора – это цвет полевых шпатов, которые в свою очередь окрашены тонкораспыленным гематитом. Живописные узоры яшмы, используемой при отделке станций столичного метро, оранжевые и розовые сердолики Крыма, кораллово-красные прослойки сильвина и карналлита в соляных толщах – все обязаны своим цветом гематиту.
Издавна из гематита делали красную краску. Все известные фрески, выполненные 15-20 тыс. лет назад, – замечательные бизоны Альтамирской пещеры и мамонты из знаменитой Капской пещеры – выполнены и коричневыми оксидами и гидроксидами железа.
Магнетит
Магнетит, или магнитный железняк – минерал, содержащий 72% железа. Это самая богатая железная руда. Замечательное в этом минерале его природный магнетизм – свойство, благодаря которому он был открыт.
Как сообщал римский ученый Плиний, магнетит назван в честь греческого пастуха Магнеса. Магнес пас стадо возле холма над р. Хинду в Фессалии. Неожиданно посох с железным наконечником и подбитые гвоздями сандалии притянула к себе гора, сложенная сплошным серым камнем. Минерал магнетит дал в свою очередь название магниту, магнитному полю и всему загадочному явлению магнетизма, которое пристально изучается со времен Аристотеля и по сей день.
Магнитные свойства этого минерала и сегодня используются, прежде всего для поиска месторождений. Именно так были открыты уникальные месторождения железа на площади Курской магнитной аномалии (КМА). Минерал тяжелый: образец магнетита размером с яблоко весит 1,5 кг.
В древности магнетит наделяли всевозможными лечебными свойствами и способностью творить чудеса. Его использовали для извлечения металла при ранениях, а Иван Грозный среди своих сокровищ наравне с другими камнями хранил его непримечательные кристаллы.
Пирит – минерал, подобный огню
Пирит – один из тех минералов, увидев который хочется воскликнуть: "Неужели это так и было?" Трудно поверить, что высший класс огранки и полировки, поражающий нас в рукотворных изделиях, в кристаллах пирита – щедрый дар природы.
Пирит получил свое название от греческого слова "пирос" – огонь, что связано с его свойством искрить при ударе стальными предметами. Этот красивый минерал поражает золотистым цветом, ярким блеском на почти всегда четких гранях. Благодаря своим свойствам пирит известен с глубокой древности, а во время эпидемий золотой лихорадки пиритовые блестки в кварцевой жиле вскружили не одну горячую голову. Да и сейчас начинающие любители камня нередко принимают пирит за золото.
Пирит – минерал вездесущий: он образуется из магмы, из паров и растворов, и даже из осадков, каждый раз в специфических формах и сочетаниях. Известен случай, когда за несколько десятилетий в пирит превратилось тело упавшего в шахту рудокопа. Железа в пирите немало – 46,5%, но извлекать его дорого и невыгодно.
В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.
Физические свойства
В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.
Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».
При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).
Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.
Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.
Способы получения железа
1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:
Восстановление происходит постепенно, в 3 стадии:
1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2
2) Fe 3 O 4 + СО = 3FeO +СO 2
3) FeO + СО = Fe + СO 2
Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.
2. Очень чистое железо получают одним из способов:
а) разложение пентакарбонила Fe
Fe(CO) 5 = Fe + 5СО
б) восстановление водородом чистого FeO
FeO + Н 2 = Fe + Н 2 O
в) электролиз водных растворов солей Fe +2
FeC 2 O 4 = Fe + 2СO 2
оксалат железа (II)
Химические свойства
Fe - металл средней активности, проявляет общие свойства, характерные для металлов.
Уникальной особенностью является способность к «ржавлению» во влажном воздухе:
В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:
3Fe + 2O 2 = Fe 3 O 4
В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:
3 Fe + 4Н 2 O(г) = 4H 2
Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.
Виды коррозии
Защита железа от коррозии
1. Взаимодействие с галогенами и серой при высокой температуре.
2Fe + 3Cl 2 = 2FeCl 3
2Fe + 3F 2 = 2FeF 3
Fe + I 2 = FeI 2
Образуются соединения, в которых преобладает ионный тип связи.
2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).
Fe + Р = Fe x P y
Fe + C = Fe x C y
Fe + Si = Fe x Si y
Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)
3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)
Fe 0 + 2Н + → Fe 2+ + Н 2
Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.
Fe + 2HCl = FeCl 2 + Н 2
Fe + H 2 SO 4 = FeSO 4 + Н 2
4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)
Fe 0 - 3e - → Fe 3+
Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).
В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:
Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O
Очень хорошо растворяется в смеси НСl и HNO 3
5. Отношение к щелочам
В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.
6. Взаимодействие с солями менее активных металлов
Fe + CuSO 4 = FeSO 4 + Cu
Fe 0 + Cu 2+ = Fe 2+ + Cu 0
7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)
Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа
Соединения Fe(III)
Fe 2 O 3 - оксид железа (III).
Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».
Способы получения:
1) разложение гидроксида железа (III)
2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O
2) обжиг пирита
4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3
3) разложение нитрата
Химические свойства
Fe 2 O 3 - основный оксид с признаками амфотерности.
I. Основные свойства проявляются в способности реагировать с кислотами:
Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О
Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O
Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O
II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:
Fe 2 О 3 + СаО = Ca(FeО 2) 2
Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O
Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2
III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:
Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2
Fe(OH) 3 - гидроксид железа (III)
Способы получения:
Получают при действии щелочей на растворимые соли Fe 3+ :
FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl
В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.
Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:
4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3
4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3
Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .
Химические свойства
Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:
1) реакции с кислотами протекают легко:
2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:
Fe(OH) 3 + 3КОН = K 3
В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):
2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O
Соли Fe 3+
Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)
б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)
Оксидами железа называют соединения железа с кислородом.
Наиболее известны три оксида железа: оксид железа (II) – FeO ,оксид железа (III ) – Fe 2 O 3 и оксид железа (II , III ) – Fe 3 O 4 .
Оксид железа (II)
Химическая формула оксида двухвалентного железа - FeO . Это соединение имеет чёрный цвет.
FeO легко реагирует с разбавленной соляной кислотой и концентрированной азотной кислотой.
FeO + 2HCl → FeCl 2 + H 2 O
FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O
С водой и с солями в реакцию не вступает.
При взаимодействии с водородом при температуре 350 о С и коксом при температуре выше 1000 о С восстанавливается до чистого железа.
FeO +H 2 → Fe + H 2 O
FeO +C → Fe + CO
Получают оксид железа (II) разными способами:
1. В результате реакции восстановления оксида трёхвалентного железа угарным газом.
Fe 2 O 3 + CO → 2 FeO + CO 2
2. Нагревая железо при низком давлении кислорода
2Fe + O 2 → 2 FeO
3. Разлагая оксалат двухвалентного железа в вакууме
FeC 2 O 4 → FeO +CO + CO 2
4. Взаимодействием железа с оксидами железа при температуре 900-1000 о
Fe + Fe 2 O 3 → 3 FeO
Fe + Fe 3 O 4 → 4 FeO
В природе оксид двухвалентного железа существует как минерал вюстит.
В промышленности применяется при выплавке чугуна в домнах, в процессе чернения (воронения) стали. Входит он в состав красителей и керамики.
Оксид железа (III )
Химическая формула Fe 2 O 3 . Это соединение трёхвалентного железа с кислородом. Представляет собой порошок красно-коричневого цвета. В природе встречается как минерал гематит.
Fe 2 O 3 имеет и другие названия: окись железа, железный сурик, крокус, пигмент красный 101, пищевой краситель E172 .
В реакцию с водой не вступает. Может взаимодействовать как с кислотами, так и со щелочами.
Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O
Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O
Оксид железа (III) применяют для окраски строительных материалов: кирпича, цемента, керамики, бетона, тротуарной плитки, линолеума. Добавляют его в качестве красителя в краски и эмали, в полиграфические краски. В качестве катализатора оксид железа используется в производстве аммиака. В пищевой промышленности он известен как Е172.
Оксид железа (II, III )
Химическая формула Fe 3 O 4 . Эту формулу можно написать и по-другому: FeO Fe 2 O 3 .
В природе встречается как минерал магнетит, или магнитный железняк. Он является хорошим проводником электрического тока и обладает магнитными свойствами. Образуется при горении железа и при действии перегретого пара на железо.
3Fe + 2 O 2 → Fe 3 O 4
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2
Нагревание при температуре 1538 о С приводит к его распаду
2Fe 3 O 4 → 6FeO + O 2
Вступает в реакцию с кислотами
Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O
Fe 3 O 4 + 10HNO 3 → 3Fe(NO 3) 3 + NO 2 + 5H 2 O
Со щелочами реагирует при сплавлении
Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O
Вступает в реакцию с кислородом воздуха
4 Fe 3 O 4 + O 2 → 6Fe 2 O 3
Восстановление происходит при реакции с водородом и монооксидом углерода
Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O
Fe 3 O 4 + 4CO → 3Fe +4CO 2
Магнитные наночастицы оксида Fe 3 O 4 нашли применение в магнитно-резонансной томографии. Они же используются в производстве магнитных носителей. Оксид железа Fe 3 O 4 входит в состав красок, которые производятся специально для военных кораблей, подводных лодок и другой техники. Из плавленного магнетита изготавливают электроды для некоторых электрохимических процессов.