Мантию можно подразделить на три главные сейсмические области, которые в целом концентричны с земной поверхностью; верхнюю мантию, переходную зону (с аномальными градиентами скоростей) и нижнюю мантию. Значения плотностей для этих областей показаны на рисунке. Для верхних 400 км мантии характерны весьма низкие плотностные градиенты, а в переходной зоне имеются участки резкого возрастания плотности; глубже 1050 км находится обширная зона низких градиентов плотности, распространяющаяся почти до границы ядра (на глубине 2885 км), за исключением, возможно, еще одной переходной зоны непосредственно в подошве мантии.
Минеральный и химический составы мантии известны далеко не так хорошо, как плотность
Минеральный и химический составы мантии известны далеко не так хорошо, как плотность, но некоторые сведения можно получить из ограничений, налагаемых физическими характеристиками, из данных по метеоритам и из геологических материалов.
- Физические ограничения используются для того, чтобы определить, какие типы горных пород могут существовать на глубине. Кроме плотности, необходимо учитывать тесно связанный с ней параметр — литостатическое давление (т.е. давление, производимое весом вышележащих пород). Для суждения о проблемах, связанных с плавлением и конвекцией, важна также температура. Если известны давление и температура внутри мантии, а значит, и связанные с ними значения плотности, можно поставить на образцах предположительно мантийных пород физические эксперименты с тем, чтобы определить, насколько представительны эти породы для мантии. В последующем тексте упоминаются различные предположения о возможном составе вещества глубокой мантии, причем плотность дается по измерениям в поверхностных условиях (плотность при «нулевом» давлении).
- Данные по метеоритам позволяют проверить предположения о возможных составах вещества. Исходя из хондритовой модели Земли, первоначальную мантию Земли можно уподобить силикатным фазам хондритов. В совокупности с теорией распределения элементов по их электронным свойствам это накладывает дополнительные ограничения на валовой состав и на характер изменения состава с глубиной.
- Геологические материалы, определенно касающиеся мантии, имеют ключевое значение. Среди мантийных пород, которые можно найти на земной поверхности, главную роль играют продукты плавления — вулканические базальты — и содержащиеся в них включения (ксенолиты, обломки) предположительно мантийного материала. Связь между возможным составом мантии и продуктами ее плавления устанавливается методами экспериментальной петрологии, позволяющими воспроизвести температуры и давления, характерные по меньшей мере для верхних 600 км мантии. Глубина источников базальтов вполне укладывается в этот интервал, как это можно установить по землетрясениям, связанным с вулканическими извержениями
Еще один вид сведений геологического характера дает изучение кимберлитовых трубок
Еще один вид сведений геологического характера дает изучение кимберлитовых трубок, уходящих на мантийные глубины, и офиолитов, включающих в себя породы как океанической коры, так и верхней мантии, выведенные на поверхность в результате надвиговых движений.
Офиолиты имеют настолько важное значение, что совершенно невозможно рассматривать состав мантии в отрыве от океанической коры. Конечно, о верхних оболочках Земли сведений несравненно больше, чем о нижних частях мантии: здесь играют свою роль и доступность для отбора образцов, и возможность проведения эксперимента.Здесь мы рассмотрим указанные три плотностные зоны, что послужит вступлением к описанию особенностей динамики коры и мантии, а также характера их эволюции.
Верхняя мантия: эклогит или перидотит? Предварительная модель. Один из подходов к изучению состава мантии — задаться вопросом, из какого вещества могут образоваться базальты, слагающие почти всю океаническую кору и чрезвычайно широко распространенные на суше. Поиски такого исходного вещества легко сводятся к выбору между двумя типами пород: между перидотитами и эклогитами.
- «Перидотит»-собирательное название обширной группы ультраосновных пород, в типичный состав которых входит около 80% оливина и 20% пироксена. Перидотиты встречаются в виде тектонических линз в некоторых молодых горноскладчатых поясах, на определенных океанических островах (главным образом как включения в базальтах) и в алмазоносных кимберлитовых трубках древних континентальных областей, таких, как Южная Африка и Западная Австралия. Кимберлитовые трубки, образовавшиеся в результате вулканических взрывов с выбросом твердого материала и газов, содержат включения богатого гранатами перидотита, некоторое количество эклогита (см. ниже) и нередко алмазы, причем все это заключено в тонкозернистом цементе, в котором преобладают слюдистые минералы.
- Эклогит — метаморфическая порода, образующаяся в условиях высоких давлений и низких температур. По химическому составу эклогиты близки к базальтам. В минералогическом отношении эклогиты содержат примерно равные части глиноземистого (т.е. обогащенного алюминием) пироксена и плотного минерала — граната. Эклогиты (как и перидотиты) встречаются в молодых горных поясах, таких, как Альпы и Гималаи, и считаются метаморфизованными базальтами:
плагиоклазовый полевой шпат + пироксен + оливин базальт
гранат + глиноземистый пироксен + кварц. эклогит
Главное различие между эклогитом и перидотитом в мантии земли
Главное различие между эклогитом и перидотитом состоит в том, что эклогит содержит больше граната, тогда как в перидотите преобладает оливин; кроме того, эклогит содержит больше пироксенов и более обогащен кремнеземом.
В обоих случаях интересно рассмотреть природу границы между корой и мантией- сейсмического раздела Мохоровичича (М). Над этой границей океаническая кора имеет базальтовый состав, а континентальная кора резко отличается от нее химически и минералогически (в ней преобладают тоналиты и гранулиты.
Если (в соответствии с преобразованием верхняя мантия имеет эклогитовый состав, то океанический раздел М представляет собой фазовый переход от низкотемпературной к высокотемпературной форме одного и того же базальтового состава. Наоборот, для перидотитовой верхней мантии океанический раздел М отражает изменение состава: от базальтовой, основной коры к перидотитовой, ультраосновной верхней мантии. В обоих случаях континентальный раздел М должен отражать изменение состава.
Подвергнув образцы горных пород испытаниям при соответствующих условиях давления и температуры, исследователи установили, что представление о фазовом переходе не согласуется с наблюдаемыми глубинами океанического раздела М. Чтобы оценить значение этих экспериментальных данных, надо иметь в виду, что фазовый переход должен был бы осуществляться при определенном давлении, а значит, на некоторой постоянной глубине, если бы он не был связан с разными значениями температурного градиента. Более высокие температуры, как правило, вызывают расширение и поэтому благоприятствуют существованию базальта с его низкой плотностью, тогда как более низкие температуры благоприятны для более плотного эклогита, если имеется необходимое давление.
Каковы же условия давления и температуры у раздела Мохоровичича и в верхней мантии?
Давление Р изменяется в зависимости от глубины плотности вышележащего материала. Если для простоты мы примем, что верхние несколько сотен километров Земли имеют среднюю плотность 3300 кг/м3, то получим
Р = 3,3 107hН/м2,
где глубина h выражена в километрах. Или же, пользуясь единицами, более привычными в геологии, можно написать:
Р = 0,33ft кбар.
Температурный градиент зависит от нескольких факторов, таких, как удельная тепло- генерация пород, их коэффициент теплопроводности и тип теплопереноса-конвекция или теплопроводность. Приповерхностные породы коры сравнительно более жесткие, чем более глубинные мантийные материалы, поэтому теплоперенос путем конвекции в них затруднен. Кроме того, в них содержится больше источников радиогенного тепла, чем в любых постулируемых мантийных породах; поэтому для коры характерны наиболее высокие температурные градиенты.
Значения температурных градиентов для неглубоко залегающих пород
Значения температурных градиентов для неглубоко залегающих пород (измеренные в буровых скважинах) лежат, как установлено, между 20 и 40°С/км, но такие значения нельзя экстраполировать на все 2900 км мантии. Помимо низкой теплогенерации мантийных пород и их пластических свойств мы знаем, что разумный предел для температуры внешнего ядра составляет около 4000°С. В глубокой мантии температурный градиент должен уменьшаться до уровня адиабатического градиента, т.е. примерно до 0,3°С/км. Такие криволинейные геотермы включают участки крутых градиентов в жестком, сильно сверхадиабатическом проводящем слое (кора и самые верхи мантии) и более пологие градиенты в слабо сверхадиабатическом, конвектирующем слое, расположенном ниже.
Помимо этих-ярко выраженных особенностей имеются также менее заметные различия между температурными градиентами в приповерхностных океанических и континентальных областях. Это связано с почти одинаковыми значениями равновесного океанического и континентального теплового потока. Поскольку известные континентальные породы характеризуются значительно более высокой теплогенерацией, чем большинство океанических пород, постулируется, что температуры в верхней мантии под океанами должны быть выше, чем под континентами.
Теперь мы можем вернуться к экспериментальным данным, касающимся фазового перехода базальт-эклогит. Точное положение этой границы с уверенностью не установлено, но чем выше температура на глубине, тем глубже осуществляется фазовый переход. Поэтому в районах с высоким геотермическим градиентом раздел М в случае эклогитовой верхней мантии будет глубже, чем в районах с более низким градиентом, таких, как континенты (точка А). Никакой корреляции такого рода междугеотермическим градиентом и глубиной сейсмического раздела Мохоровичича не обнаружено; кроме того, известно, что для появления эклогита необходимы более высокие давления, чем те, которые возможны у океанического раздела М. И последний «гвоздь в гроб» эклогитовой модели-необходимость 100%-ного плавления для получения химически идентичной базальтовой магмы. Полностью жидкий слой должен был бы совершенно гасить S-волны, чего в действительности не происходит. Наблюдаемое слабое затухание соответствует только небольшому (несколько процентов) частичному плавлению, поэтому оно свидетельствует в пользу перидотитовой модели. Таким образом, то обстоятельство, что эклогит по составу очень близок к базальту, отнюдь не означает, что он является исходным материалом для базальта; наоборот, это полностью исключает такую возможность!
Мантия земли видео
Под земной корой расположен следующий слой, именуемый мантией. Он окружает ядро планеты и имеет толщину почти три тысячи километров. Строение мантии Земли очень сложное, поэтому требует детального изучения.
Мантия и ее особенности
Название данной оболочки (геосферы) происходит от греческого слова, обозначающего плащ или покрывало. В действительности, мантия, словно покрывало окутывает ядро. На нее приходится около 2/3 массы Земли и примерно 83% ее объема.
Принято считать, что температура оболочки не превышает 2500 градусов по Цельсию. Ее плотность в разных слоях существенно отличается: в верхней части она составляет до 3.5 т/куб.м, а в нижних – 6 т/куб.м. Состоит мантия из твердых кристаллических веществ (тяжелых минералов, богатых железом и магнием). Исключением является только астеносфера, которая находится полурасплавленном состоянии.
Структура оболочки
Теперь рассмотрим строение мантии земли. Геосфера состоит из следующих частей:
- верхняя мантия, толщиной 800-900 км;
- астеносфера;
- нижняя мантия, толщиной около 2000 км.
Верхняя мантия – это часть оболочки, которая расположена ниже земной коры и входит в литосферу. В свою очередь она делится на астеносферу и слой Голицина, который характеризуется интенсивным увеличением скоростей сейсмических волн. Эта часть мантии Земли влияет на такие процессы, как тектонические движения плит, метаморфизм и магматизм. Стоит отметить, что строение ее отличается в зависимости от того, под каким тектоническим объектом она располагается.
Астеносфера. Само название серединного слоя оболочки с греческого языка переводится, как «слабый шар». Геосфера, которую относят к верхней части мантии, а иногда выделяют в отдельный слой, характеризируется пониженной твердостью, прочностью и вязкостью. Верхняя граница астеносферы всегда находится ниже крайней линии земной коры: под континентами – на глубине 100 км, под морским дном – 50 км. Нижняя черта ее расположена на глубине 250-300 км. Астеносфера является главным источником магмы на планете, а движение аморфного и пластичного вещества считается причиной тектонических движений в горизонтальной и вертикальной плоскостях, магматизма и метаморфизма земной коры.
О нижней части мантии ученые знают немного. Считается, что на границе с ядром расположен особенный слой Д, напоминающий астеносферу. Он отличается высокой температурой (из-за близости раскаленного ядра) и неоднородностью вещества. В состав же массы входит железо и никель.
Состав мантии Земли
Кроме строения мантии Земли интересен и ее состав. Геосферу создают оливин и ультраосновные породы (перидотиты, перовскиты, дуниты), но присутствуют и основные породы (эклогиты). Установлено, что в оболочке содержатся редкие разновидности, которые не встречаются в земной коре (гроспидиты, флогопитовые перидотиты, карбонатиты).
Если говорить о химическом составе, то в мантии в разной концентрации содержатся: кислород, магний, кремний, железо, алюминий, кальций, натрий и калий, а также их оксиды.
Мантия и ее изучение — видео
Имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы - дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.
Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию - стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см 3 , то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см 3 .
Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.
Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO 2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.
Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO 2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.
Нижняя мантия в пределах глубин 1000-2900 км практически полностью состоит из плотных разновидностей минералов - окислов, о чем свидетельствует ее высокая плотность в пределах 4,08-5,7 г/см 3 . Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.
Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.
Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.
Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру , у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова-Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких и давлениях в пределах глубин 2900-6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.
За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.
Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10-20%) какого-то легкого . Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра - кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.
А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.
Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.
Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.
В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe-FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe-FeS составит 990° С, в то время как чистого железа - 1610°, а пиролита мантии - 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.
Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.
Подводя итог сказанному, можно сделать следующие выводы.
- Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
- Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
- В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.
Задача любой космогонической теории происхождения Земли - объяснить эти основные особенности ее внутренней природы и состава.
Д.Ю. Пущаровский, Ю.М. Пущаровский (МГУ им. М.В. Ломоносова)
Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры - тонкой приповерхностной пленке земного шара. Вместе с тем новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.
Сейсмическая модель строения Земли
Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра .
Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо , М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.
Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.
Рис. 1. Схема глубинного строения Земли
Тем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км . Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.
Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.
Ниже рассмотрим, каким образом геофизические рубежи соотносятся с полученными в последнее время результатами структурных изменений минералов под влиянием высоких давлений и температур, значения которых соответствуют условиям земных глубин.
Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.
Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы - оливин, пироксены и гранат в отношении 4: 2: 1), пиклогитовая (главные минералы - пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al2SiO5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии , простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO2) ~ 2, оказываясь ближе к оливину (Mg, Fe)2SiO4, чем к пироксену (Mg, Fe)SiO3, а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.
Границей между корой и мантией служит граница Мохоровичича или, сокращённо, Мохо. На ней происходит резкое увеличение сейсмических скоростей - от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына , располагающийся на глубине около 673 км.
В начале 20 века активно обсуждалась природа границы Мохоровичича. Некоторые исследователи предполагали, что там происходит метаморфическая реакция, в результате которой образуются породы с высокой плотностью. В качестве такой реакции предлагалась реакция эклогитизации, в результате которой породы базальтового состава превращаются в эклогит , и их плотность увеличивается на 30 %. Другие учёные объясняли резкое увеличение скоростей сейсмических волн изменением состава пород - от относительно лёгких коровых кислых и основных к плотным мантийным ультраосновным породам. Эта точка зрения сейчас является общепризнанной.
Отличие состава земной коры и мантии - следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и лёгкую часть - кору и плотную и тугоплавкую мантию.
Источники информации о мантии
Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.
Мантию изучают по следующим данным:
- Геофизические данные. В первую очередь данные о скоростях сейсмических волн, электропроводности и силе тяжести.
- Мантийные расплавы - перидотиты , базальты , коматииты , кимберлиты , лампроиты , карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии. Состав расплава является следствием состава плавившихся пород, механизма плавления и физико-химических параметров процесса плавления. В целом, реконструкция источника по расплаву - сложная задача.
- Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами - кимберлитами, щелочными базальтами и др. Это ксенолиты , ксенокристы и алмазы . Алмазы занимают среди источников информации о мантии особое место. Именно в алмазах установлены самые глубинные минералы, которые, возможно, происходят даже из нижней мантии. В таком случае эти алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.
- Мантийные породы в составе земной коры. Такие комплексы в наибольшей степени соответствуют мантии, но и отличаются от неё. Самое главное различие - в самом факте их нахождения в составе земной коры, из чего следует, что они образовались в результате не совсем обычных процессов и, возможно, не отражают типичную мантию. Они встречаются в следующих геодинамических обстановках:
- Альпинотипные гипербазиты - части мантии, внедрённые в земную кору в результате горообразования. Наиболее распространены в Альпах , от которых и произошло название.
- Офиолитовые гипербазиты - перидотиты в составе офиолитовых комплексов - частей древней океанической коры .
- Абиссальные перидотиты - выступы мантийных пород на дне океанов или рифтов .
Эти комплексы имеют то преимущество, что в них можно наблюдать геологические соотношения между различными породами.
Было объявлено, что японские исследователи планируют предпринять попытку пробурить океаническую кору до мантии. Начало бурения планировалось на 2007 год. Обсуждалась также возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов ().
Основной недостаток полученной из этих фрагментов информации - невозможность установления геологических соотношений между различными типами пород. Это кусочки мозаики. Как сказал классик [кто? ] , «определение состава мантии по ксенолитам напоминает попытки определения геологического строения гор по галькам, которые из них вынесла речка».
Состав мантии
Мантия сложена главным образом ультраосновными породами : перовскитами , перидотитами (лерцолитами , гарцбургитами , верлитами, пироксенитами , дунитами) и в меньшей степени основными породами - эклогитами .
Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.
| Элемент | Концентрация | Оксид | Концентрация | |
|---|---|---|---|---|
| 44,8 | ||||
| 21,5 | SiO 2 | 46 | ||
| 22,8 | MgO | 37,8 | ||
| 5,8 | FeO | 7,5 | ||
| 2,2 | Al 2 O 3 | 4,2 | ||
| 2,3 | CaO | 3,2 | ||
| 0,3 | Na 2 O | 0,4 | ||
| 0,03 | K 2 O | 0,04 | ||
| Сумма | 99,7 | Сумма | 99,1 |