См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия
См. также: Список химических элементов по символам и Алфавитный список химических элементов Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в… … Википедия
- (ИСО 4217) Коды для представления валют и фондов Codes for the representation of currencies and funds (англ.) Codes pour la représentation des monnaies et types de fonds (фр.) … Википедия
Простейшая форма материи, которая может быть идентифицирована химическими методами. Это составные части простых и сложных веществ, представляющие собой совокупность атомов с одинаковым зарядом ядра. Заряд ядра атома определяется числом протонов в … Энциклопедия Кольера
Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия
Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия
У этого термина существуют и другие значения, см. Русские (значения). Русские … Википедия
Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации
Зная формулировка периодического закона и используя периодическую систему элементов Д. И. Менделеева, можно дать характеристику любому химическому элементу и его соединениям. Такую характеристику химического элемента удобно складывать по плану.
I. Символ химического элемента и его название.
II. Положение химического элемента в периодической системе элементов Д.И. Менделеева:
- порядковый номер;
- номер периода;
- номер группы;
- подгруппа (главная или побочная).
III. Строение атома химического элемента:
- заряд ядра атома;
- относительная атомная масса химического элемента;
- число протонов;
- число электронов;
- число нейтронов;
- число электронных уровней в атоме.
IV. Электронная и электронно-графическая формулы атома, его валентные электроны.
V. Тип химического элемента (металл или неметалл, s-, p-, d-или f-элемент).
VI. Формулы высшего оксида и гидроксида химического элемента, характеристика их свойств (основные, кислотные или амфотерные).
VII. Сравнение металлических или неметаллических свойств химического элемента со свойствами элементов-соседей по периоду и подгруппой.
VIII. Максимальная и минимальная степень окисления атома.
Например, предоставим характеристику химического элемента с порядковым номером 15 и его соединениям по положению в периодической системе элементов Д. И. Менделеева и строению атома.
I. Находим в таблице Д. И. Менделеева клетку с номером химического элемента, записываем его символ и название.
Химический элемент номер 15 — Фосфор. Его символ Р.
II. Охарактеризуем положение элемента в таблице Д. И. Менделеева (номер периода, группы, тип подгруппы).
Фосфор находится в главной подгруппе V группы, в 3-м периоде.
III. Предоставим общую характеристику состава атома химического элемента (заряд ядра, атомная масса, число протонов, нейтронов, электронов и электронных уровней).
Заряд ядра атома фосфора равен +15. Относительная атомная масса фосфора равна 31. Ядро атома содержит 15 протонов и 16 нейтронов (31 — 15 = 16). Атом фосфора имеет три энергетических уровня, на которых находятся 15 электронов.
IV. Составляем электронной и электронно-графическую формулы атома, отмечаем его валентные электроны.
Электронная формула атома фосфора: 15 P 1s 2 2s 2 2p 6 3s 2 3p 3 .
Электронно-графическая формула внешнего уровня атома фосфора: на третьем энергетическом уровне на 3s-подуровня находятся два электрона (в одной клетке записываются две стрелки, имеющие противоположное направление), на три р-подуровне находятся три электрона (в каждой из трех клеток записываются по одной стрелке, имеющие одинаковое направление).
Валентными электронами являются электроны внешнего уровня, т.е. 3s2 3p3 электроны.
V. Определяем тип химического элемента (металл или неметалл, s-, p-, d-или f-элемент).
Фосфор — неметалл. Поскольку в последнее подуровнем в атоме фосфора, который заполняется электронами, является p-подуровень, Фосфор относится к семейству p-элементов.
VI. Составляем формулы высшего оксида и гидроксида фосфора и характеризуем их свойства (основные, кислотные или амфотерные).
Высший оксид фосфора P 2 O 5 , проявляет свойства кислотного оксида. Гидроксид, соответствующий высшему оксиду, H 3 PO 4 , проявляет свойства кислоты. Подтвердим указанные свойства уравнениями видповиних химических реакций:
P 2 O 5 + 3 Na 2 O = 2Na 3 PO 4
H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O
VII. Сравним неметаллические свойства фосфора со свойствами элементов-соседей по периоду и подгруппой.
Соседом фосфора по подгруппе являются азот. Соседями фосфора за периодом является кремний и Сера. Неметаллические свойства атомов химических элементов главных подгрупп с ростом порядкового номера растут в периодах и снижаются в группах. Поэтому неметаллические свойства фосфора более выражены, чем у кремния и менее выражены, чем у азота и серы.
VIII. Определяем максимальную и минимальную степень окисления атома фосфора.
Максимальный положительный степень окисления для химических элементов главных подгрупп равен номеру группы. Фосфор находится в главной подгруппе пятой группы, поэтому максимальная степень окисления фосфора +5.
Минимальная степень окисления для неметаллов в большинстве случаев равен разнице между номером группы и числом восемь. Так, минимальная степень окисления фосфора -3.
В химических реакциях происходят превращения одних веществ в другие. Чтобы понять, как это происходит, нужно вспомнить из курса природоведения и физики, что вещества состоят из атомов. Существует ограниченное число видов атомов. Атомы могут различным образом соединяться друг с другом. Как при складывании букв алфавита образуются сотни тысяч разных слов, так из одних и тех же атомов образуются молекулы или кристаллы разных веществ. Атомы могут образовать молекулы – мельчайшие частицы вещества, которые сохраняют его свойства. Известно, например, несколько веществ, образованных всего из двух видов атомов – атомов кислорода и атомов водорода, но разными видами молекул. К числу таких веществ относятся вода, водород и кислород. Молекула воды состоит из трех частиц, связанных друг с другом. Это и есть атомы. К атому кислорода (атомы кислорода обозначаются в химии буквой О) присоединены два атома водорода (они обозначаются буквой Н). Молекула кислорода состоит из двух атомов кислорода; молекула водорода – из двух атомов водорода. Молекулы могут образовываться в ходе химических превращений, а могут и распадаться. Так, каждая молекула воды распадается на два атома водорода и один атом кислорода. Две молекулы воды образуют вдвое больше атомов водорода и кислорода. Одинаковые атомы связываются попарно в молекулы новых веществ – водород и кислород. Молекулы, таким образом, разрушаются, а атомы сохраняются. Отсюда и произошло слово «атом», что значит в переводе с древнегреческого «неделимый». Атомы – это мельчайшие химически неделимые частицы вещества В химических превращениях образуются другие вещества из тех же атомов, из которых состояли исходные вещества. Как микробы стали доступны наблюдению с изобретением микроскопа, так атомы и молекулы – с изобретением приборов, дающих еще большее увеличение и даже позволяющих атомы и молекулы фотографировать. На таких фотографиях атомы выглядят в виде расплывчатых пятен, а молекулы – в виде сочетания таких пятен. Однако существуют и такие явления, при которых атомы делятся, атомы одного вида превращаются в атомы других видов. При этом получены искусственно и такие атомы, которые в природе не найдены. Но эти явления изучаются не химией, а другой наукой – ядерной физикой. Как уже говорилось, существуют и другие вещества, в состав которых входят атомы водорода и кислорода. Но, независимо от того, входят эти атомы в состав молекул воды, или в состав других веществ – это атомы одного и того же химического элемента. Химический элемент – определенный вид атомов Сколько всего существует видов атомов? На сегодняшний день человеку достоверно известно о существовании 118 видов атомов, то есть 118 химических элементов. Из них в природе встречаются 90 видов атомов, остальные получены искусственно в лабораториях.
Символы химических элементов
В химии для обозначения химических элементов используют химическую символику. Это язык химии . Для понимания речи на любом языке необходимо знать буквы, в химии точно так же. Чтобы понимать и описывать свойства веществ, и изменения, происходящие с ними, прежде всего, необходимо знать символы химических элементов. В эпоху алхимии химических элементов было известно намного меньше, чем сейчас. Алхимики отождествляли их с планетами, различными животными, античными божествами. В настоящее время во всем мире пользуются системой обозначений, введенной шведским химиком Йёнсом Якобом Берцелиусом. В его системе химические элементы обозначают начальной или одной из последующих букв латинского названия данного элемента. Например, элемент серебро обозначается символом – Ag (лат. Argentum). Ниже приведены символы, произношения символов, и названия наиболее распространенных химических элементов. Их нужно заучить на память! Русский химик Дмитрий Иванович Менделеев первым упорядочил разнообразие химических элементов, и на основании открытого им Периодического Закона составил Периодическую Систему химических элементов. Как устроена Периодическая Система химических элементов? На рисунке 58 изображен короткопериодный вариант Периодической Системы. Периодическая Система состоит из вертикальных столбцов и горизонтальных строк. Горизонтальные строки называются периодами. На сегодняшний день все известные элементы размещаются в семи периодах. Периоды обозначают арабскими цифрами от 1 до 7. Периоды 1–3 состоят из одного ряда элементов – их называют малыми. Периоды 4–7 состоят из двух рядов элементов, их называют большими. Вертикальные столбцы Периодической Системы называют группами элементов. Всего групп восемь, и для их обозначения используют римские цифры от I до VIII. Выделяют главные и побочные подгруппы. Периодическая Система – универсальный справочник химика, с ее помощью можно получить информацию о химических элементах. Существует еще один вид Периодической Системы – длиннопериодный. В длиннопериодной форме Периодической Системы элементы сгруппированы иначе, и распределены на 18 групп. В данном варианте Периодической Системы элементы сгруппированы по «семействам», то есть в каждой группе элементов расположены элементы со сходными, похожими свойствами. В данном варианте Периодической Системы , номера групп, как и периодов, обозначают арабскими цифрами. Периодическая Система химических элементов Д.И. Менделеева Характеристики элемента в Периодической СистемеРаспространенность химических элементов в природе
Атомы элементов, встречающихся в природе, распределенные в ней очень неравномерно. В космосе самым распространенным элементом является водород – первый элемент Периодической Системы. На его долю приходится около 93% всех атомов Вселенной. Около 6,9% составляют атомы гелия – второго элемента Периодической Системы. Остальные 0,1% приходится на все остальные элементы. Распространенность химических элементов в земной коре значительно отличается от их распространенности во Вселенной. В земной коре больше всего атомов кислорода и кремния. Вместе с алюминием и железом они формируют основные соединения земной коры. А железо и никель – основные элементы, из которых состоит ядро нашей планеты. Живые организмы также состоят из атомов различных химических элементов. В организме человека больше всего содержится атомов углерода, водорода, кислорода и азота.Делаем выводы из статьи про Химические элементы.
- Химический элемент – определенный вид атомов
- На сегодняшний день человеку достоверно известно о существовании 118 видов атомов, то есть 118 химических элементов. Из них в природе встречаются 90 видов атомов, остальные – получены искусственно в лабораториях
- Существует два варианта Периодической Системы химических элементов Д.И. Менделеева – короткопериодный и длиннопериодный
- Современная химическая символика образована от латинских названий химических элементов
- Периоды – горизонтальные строки Периодической Системы. Периоды разделяют на малые и большие
- Группы – вертикальные строки периодической таблицы. Группы разделяют на главные и побочные
Все многообразие окружающей нас природы состоит из сочетаний сравнительно небольшого числа химических элементов. Так какова же характеристика химического элемента, и чем он отличается от простого вещества?
Химический элемент: история открытия
В различные исторические эпохи в понятие «элемент» вкладывался различный смысл. Древнегреческие философы в качестве таких «элементов» рассматривали 4 «стихии» – тепло, холод, сухость и влажность. Сочетаясь попарно они образовывали четыре «начала» всего на свете – огонь, воздух, воду и землю.
В XVII веке Р. Бойль указал на то, что все элементы носят материальный характер и их число может быть достаточно велико.
В 1787 году французский химик А. Лавуазье создал «Таблицу простых тел». В нее вошли все известные к тому времени элементы. Под последними понимались простые тела, которые не удавалось разложить химическими методами на еще более простые. Впоследствии выяснилось, что в таблицу вошли и некоторые сложные вещества.
К моменту, когда Д. И. Менделеев открыл периодический закон, было известно всего 63 химических элементов. Открытие ученого не только привело к упорядоченной классификации химических элементов, а также помогло предсказать существование новых, еще не открытых элементов.

Рис. 1. А. Лавуазье.
Что такое химический элемент?
Химическим элементом называют определенный вид атомов. В настоящее время известно 118 химических элементов. Каждый элемент обозначают символом, который представляет одну или две буквы из его латинского названия. Например, элемент водород обозначают латинской буквой H и формулой H 2 – первой буквой латинского названия элемента Hydrogenium. Все достаточно хорошо изученные элементы имеют символы и названия, которые можно найти в главных и побочных подгруппах Периодической системы, где все они расположены в определенном порядке.
Cуществует много видов систем, но общепринятой является Периодическая система химических элементов Д. И. Менделеева, которая является графическим выражением Периодического закона Д. И. Менделеева. Обычно используют короткую и длинную формы Периодической системы.

Рис. 2. Периодическая система элементов Д. И. Менделеева.
Что же является главным признаком, по которому атом относят к определенному элементу? Д. И. Менделеев и другие ученые-химики XIX века считали главным признаком атома массу как наиболее стабильную его характеристику, поэтому элементы в Периодической системе расположены в порядке возрастания атомной массы (за немногим исключением).
По современным представлениям, главным свойством атома, относящим его к определенному элементу, является заряд ядра. Таким образом, химический элемент – это вид атомов, характеризующихся определенным значением (величиной) части химического элемента – положительного заряда ядра.
Из всех существующих 118 химических элементов большую часть (около 90) можно обнаружить в природе. Остальные же получены искусственно с помощью ядерных реакций. Элементы 104-107 были синтезированы учеными-физиками в Объединенном институте ядерных исследований в городе Дубне. В настоящее время продолжаются работы по искусственному получению химических элементов с более высокими порядковыми номерами.
Все элементы делятся на металлы и неметаллы. Более 80 элементов относятся к металлам. Однако это деление условное. При определенных условиях некоторые металлы могут проявлять неметаллические свойства, а некоторые неметаллы – металлические свойства.
Содержание различных элементов в природных объектах колеблется в широких пределах. 8 химических элементов (кислород, кремний, алюминий, железо, кальций, натрий, калий, магний) составляют 99% земной коры по массе, все остальные – менее 1%. Большинство химических элементов имеют природное происхождение (95), хотя некоторые из них изначально были выведены искусственно (например, прометий).
Следует различать понятия «простое вещество» и «химический элемент». Простое вещество характеризуется определенными химическими и физическими свойствами. В процессе химического превращения простое вещество утрачивает часть своих свойств и входит в новое вещество в виде элемента. Например, азот и водород, входящие в состав аммиака, содержатся в нем не в виде простых веществ, а в виде элементов.
Некоторые элементы объединяются в группы, такие как органогены (углерод, кислород, водород, азот), щелочные металлы (литий, натрий, калий и т.д.), лантаноиды (лантан, церий и т.д.), галогены (фтор, хлор, бром и т.д.), инертные элементы (гелий, неон, аргон)
Залесов Александр Кириллович
Химический элемент - элемент elementum - стихия, самостоятельная часть, являющаяся основой чего-либо, например системы или множества.
Химический элемент -этимология
Латинское слово elementum использовали ещё античные авторы (Цицерон, Овидий, Гораций), причём почти в том же смысле, что и сейчас - как часть чего-то (речи, образования и т. п.).
Древнее изречение гласило: «Cлова состоят из букв, тела из элементов». Отсюда - одно из возможных происхождений этого слова - по названию ряда согласных латинских букв L, M, N (el-em-en).
Михаил Васильевич Ломоносов элементами называл атомы.
Химический элемент - множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым или атомным номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева.
Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные)
История становления понятия
Слово элемент (лат. elementum) использовалось еще в античности (Цицероном, Овидием, Горацием) как часть чего-то (элемент речи, элемент образования и т. п.). В древности было распространено изречение «Как слова состоят из букв, так и тела - из элементов». Отсюда - вероятное происхождение этого слова: по названию ряда согласных букв в латинском алфавите: l, m, n, t («el» - «em» - «en» - «tum»).
На международном съезде химиков в г. Карлсруе (Германия) в 1860 г. были приняты определения понятий молекулы и атома.
Химический элемент (с точки зрения атомно-молекулярного учения) представляет собой каждый отдельный вид атомов. Современное определение химического элемента: Химический элемент - каждый отдельный вид атомов, характеризующийся определенным положительным зарядом ядра кикос
Известные химические элементы
На ноябрь 2009 года известно 117 химических элементов,
(с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые - лишь в следовых количествах), остальные 23 получены искусственно в результате ядерных реакций.
Первые 112 элементов имеют постоянные названия, остальные - временные.
Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии (en:International Union for Pure and Applied Chemistry). Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов (Gesellschaft für Schwerionenforschung, GSI) в Дармштадте, Германия (в результате бомбардировки свинцовой мишени ядрами цинка). Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий, Гельмгольций, Венусий, Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113-116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны.
Символы химических элементов
Символ элемента обозначает
- Название элемента
- Один атом элемента
- Один моль атомов этого элемента
Символы химических элементов используются как сокращения для названия элементов. В качестве символа обычно берут начальную букву названия элемента и в случае необходимости добавляют следующую или одну из следующих. Обычно это начальные буквы латинских названий элементов: Cu - медь (cuprum), Ag - серебро (argentum), Fe - железо (ferrum), Au - золото (aurum), Hg - ртуть (hydrargirum).
С помощью цифры, стоящей впереди символа элемента, можно обозначить число атомов или молей атомов данного элемента. Примеры:
- 5H - пять атомов элемента водорода, пять моль атомов элемента водорода
- 3S - три атома элемента серы, три моль атомов серы
Цифрами меньшего размера возле символа элемента обозначаются: слева вверху - атомная масса, слева внизу - порядковый номер, справа вверху - заряд иона, справа внизу - число атомов в молекуле
Примеры:
- H2 - молекула водорода, состоящая из двух атомов водорода
- Cu2 + - ион меди с зарядом 2+
- {}^{12}_6C - атом углерода с зарядом ядра, равным 6 и атомной массой, равной 12.
История
Система химических символов была предложена в 1811г. шведским химиком Я. Берцелиусом. Временные символы элементов состоят из трёх букв, представляющих аббревиатуру их атомного номера на латыни. Символика химических элементов выявляет не только качественный состав химических соединений, но и количественный, так как за символом каждого элемента скрывается присущий только ему заряд атомного ядра, определяющий количество электронов в атомной оболочке нейтрального атома и, таким образом, его химические свойства. Атомная масса также считалась ранее (в 19-м - начале 20-го века) характерным свойством, количественно определяющим химический элемент, однако с открытием изотопов стало ясно, что различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4He имеет атомную массу больше, чем гелий космических лучей.
Химический элемент:
1 - обозначение химического элемента.
2 - русское название.
3 - порядковый номер химического элемента, равный количеству протонов в атоме.
4 - атомная масса.
5 - распределение электронов по энергетическим уровням.
6 - электронная конфигурация.
Распространённость химических элементов в природе:
Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U(порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.
Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99% массы земной оболочки, так что на остальные элементы приходится менее 1%. В морской воде, помимо кислорода и водорода - составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.
Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.
Химические вещества
Химическое вещество может состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение). Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией.
Агрегатное состояние
В обычных условиях соответствующие простые вещества для 11 элементов являются газами (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn), для 2 - жидкостями (Br, Hg), для остальных элементов - твёрдыми телами. Химические элементы образуют около 500 простых веществ.
Скачать:
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Подписи к слайдам:
Химические элементы в живых организмах
Все живые существа состоят из химических элементов. Необходимо знать, какие элементы важны для здоровья растений, животных и человека, а какие вредны и в каком количестве. Введение
Начнём с тех химических элементов, без которых жизнь на Земле была бы невозможна. Водород, кислород, и их соединение - вода. Основы
Является структурной единицей органических соединений, участвующий в построении организмов и обеспечении их жизнедеятельности. Водород (Hydrogenium)
Водород был открыт англичанином Х. Кавендишем в 1766 году. Своё название он получил от греч. Слов хидор – вода и генес – род. Водород (Hydrogenium) Х. Кавендиш
Кислород – биоэлемент. В атмосфере его всего 21%. В живых организмах кислорода около 70%. Кислород (Oxygenium)
Кислород необходим для дыхания всех живых организмов, он главный участник окислительно-восстановительных реакций. Также участвует в построении организмов и обеспечении их жизнедеятельности. Кислород (Oxygenium)
Участвует в процессах фотосинтеза и дыхания. Весь кислород возник благодаря деятельности зелёных растений, которые выделяют кислород в процессе фотосинтеза на свету. Кислород в жизни растений Фотосинтез
Большинство живых организмов используют кислород для дыхания и поэтому являются аэробными организмами. Но каждому нужно разное количество кислорода. К примеру, для разных пород рыб нужно разное количества кислорода в воде. Кому-то 4мг/мл, а кому-то намного больше. Кислород в жизни животных
На долю кислорода приходится 62% от массы тела человека. Кислород входит в состав белков, нуклеиновых кислот и др. Окисление пищи – источник энергии. Кислород доставляется гемоглобином, который образует соединение – оксигемоглобин. Оно окисляет белки, жиры и углеводы, образуя углекислый газ и воду, и выделяя энергию, необходимую для жизнедеятельности. Кислород в жизни человека Гемоглобин
Аллотропное видоизменение кислорода – озон. Это газ, образующийся во время грозы из молекул кислорода. На высоте 15-20 км. над Землёй, озон образует слой, защищающий от ультрафиолетовых лучей. Использую озон для обеззараживания и дезинфекции. Озон Земля и озоновый слой
Основным соединением водорода и кислорода является вода. Растения на 70-80% состоят из воды. Совокупность процессов поглощения, усвоения и выделения воды, называется водным режимом. Вода (Aqua) Молекула воды
Вода выполняет множество функций: является средой для биохимических реакций, участвует в фотосинтезе, определяет функциональную активность ферментов и структурных белков клеточных мембран и органоидов. Вода (Aqua) в жизни растений
В процессе эволюции растения приобрели различные адаптации, связанные с регуляцией водного режима в конкретных условиях обитания. По этим признакам их относят к разным экологическим группам. Вода (Aqua) в жизни растений
Жизнедеятельность многих бактерий проходит во влажной среде. В почве широко распространены водородные бактерии, которые в процессе хемосинтеза окисляют водород, постоянно образующийся при анаэробном разложении различных органических остатков микроорганизмами почвы. Вода (Aqua) в жизни бактерий 2 H 2 +O 2 =2H 2 O+ энергия
Вода с растворёнными в ней минеральными веществами включается в водно-солевой обмен – совокупность процессов потребления, всасывания и выделения воды и солей. Вода (Aqua) в жизни животных и человека Водно-солевой обмен обеспечивает постоянство ионного состава, кислотно-щелочного равновесия и объёма жидкостей внутренней среды организма
Кроме обычной воды, существует метаболическая вода, которая образуется в процессе обмена веществ. Она необходима для нормального развития зародыша. У верблюдов вода образуется в процессе окисления жиров. Из 100 грамм – 107 мл. воды. Вода (Aqua) в жизни животных и человека Верблюды в пустыне. В горбах – метаболическая вода.
Роль воды в жизни живых организмов огромна. Если человек потеряет 50% массы в результате голодания, он может остаться в живых, но если потеряет 15-20% массы в результате обезвоживания – он умрёт. Вода (Aqua) в жизни животных и человека
Следующая группа химических элементов также очень важна для жизни. Человек должен употреблять их не менее 400 мг в день. А такие вещества как Na и K – 3000 мг день. Ca, P, Na, K, Mg
Кальций был открыт Х. Дэви в 1808 году. Название происходит от лат. калцис (камень, известняк). Суточное поступления кальция в организм составляет 800-1500 мг. Кальций (Calcium) Х. Дэви
В организме животного, кальция – 1,9-2,5%. Кальций – материал для постройки костных скелетов. Карбонат кальция CaCO 3 входит в состав кораллов, раковин, панцирей и скелетов микроорганизмов. Роль кальция в жизни животных Раковина
В организме человека 98-99% кальция содержится в костях. Кальций необходим для процессов кроветворения и свёртывания крови, для регуляции работы сердца, обмена веществ, для нормального роста костей (скелет, зубы). Роль кальция в жизни человека
Кальций находится в кисломолочных продуктах, в овощах, фруктах, миндале, злаках… Но больше всего кальция содержится в сырах. Где находится кальций?
CaCo 3 – кальцит, мел и др. Ca 3 (PO 4) 2 – костная мука Ca(NO 3) 2 – кальц. селитра CaO – негашеная известь Ca(OH) 2 -известковая вода CaOCl 2 – хлорка Соединения кальция Кальцит
Фосфор входит в состав важнейших веществ клеток: ДНК, РНК, фосфолипидов, глицерина и АТФ. Открыт фосфор Х. Брандом в 1669 г. Фосфор (Р) Бранд открывает фосфор. Картина Дж. Райта
Фосфор составляет 0,1-0,7% от массы растения. Фосфор ускоряет созревание плодов, поэтому удобрения из фосфора активно применяют в сельском хозяйстве. Фосфор в жизни растений
При недостатке фосфора замедляется обмен веществ, корни слабеют, листья принимают пурпурный цвет… Фосфор в жизни растений
В организме человека содержится 4,5 кг фосфора. Фосфор входит в состав липидов, ДНК, РНК, АТФ. Почти все важнейшие процессы человека связаны с превращением фосфорсодержащих веществ. Фосфор в жизни человека Молекула ДНК
Для организма, фосфора необходимо в двое больше, чем кальция. Но кальций и фосфор не могут друг без друга. Фосфор, также как и кальций, является составной частью костной ткани. Если баланс фосфора и кальция нарушается, то организм для выживания должен будет брать запасы из костей и зубов. Фосфор в жизни человека Суточная норма потребления фосфора 1000-1300 мг.
В активно работающих органах – печени, мышцах, мозге – наиболее интенсивно расходуется АТФ. АТФ – это энергия, и одну из главных ролей в этом нуклеотиде играет фосфор. Поэтому А.Е. Ферсман назвал фосфор «элементом жизни и мысли». Фосфор в жизни человека Молекула АТФ
Белый фосфор окисляется на воздухе, давая зелёное свечение. Очень ядовит. Используется в производстве серной кислоты и красного фосфора. Белый фосфор
Порошок, не ядовит, не горюч. Используется в качестве наполнителя в лампах накаливания и при производстве спичек. Красный фосфор
Натрий важен для транспорта веществ через клеточные мембраны. Также натрий регулирует транспорт углерода в растении. При его недостатке происходит торможение в образовании хлорофилла. Натрий в жизни растений
Натрий распределён по всему организму. 40% натрия находится в костной ткани, часть в эритроцитах, мышцах и др. Натрий в жизни человека Суточная норма потребления натрия – - 4000-6000 мг.
Натрий входит в состав натрий-калиевого насоса, особого белка, выкачивающего из клетки ионы натрия и накачивающий ионы калия, тем самым обеспечивая активный транспорт вещей в клетку. Натрий в жизни человека
Натрий поддерживает кислотно-щелочной баланс в организме, регулирует кровяное давление, синтез белков и многое другое. Недостаток натрия приводит к головным болям, слабости, потере аппетита. Натрий в жизни человека Поваренная соль – один из главных источников натрия.
Роль калия в жизни растений велика. Калий содержится в плодах, стеблях, корнях, листьях. Он активирует синтез органических веществ, регулирует транспорт углерода, влияет на азотный обмен и водный баланс. Калий в жизни растений
При недостатке калия в клетках накапливается избыток аммиака, что может привести к гибели растения. Признак нехватки элемента – жёлтые листья. Калий в жизни растений
Калий входит в состав натрий-калиевого насоса. В организме человека, массой 70 кг, содержится 140 грамм калия. Взрослый человек должен потреблять в сутки 2-3 мг на 1 кг веса, а ребёнок – 12-13 мг на 1 кг веса. Недостаток калия ведёт заболеванию глаз, плохой памяти, пародонтозу. Калий в жизни человека
KOH – едкий калий KCl - сильвин K2SO4 - арканит KAL(SO4)2*12H2O – - алюмокалиевые квасцы Основные соединения калия
Магний участвует в аккумуляции солнечной энергии, он входит в состав молекулы хлорофилла, являясь центральным атомом в молекуле. Магний в жизни растений
При дефиците магния снижается урожайность, нарушается образование хлоропластов. Листья становятся «мраморными»: бледнеют между жилками, а вдоль жилок остаются зелёными. Магний в жизни растений
При весе человека 70 кг, магния в нём содержится 20 грамм. Он оказывает антисептическое действие, снижает артериальное давление и содержание холестерина, укрепляет иммунную систему. При недостатке магния повышается предрасположенность к инфарктам. Магний в жизни человека
Мы рассмотрели несколько химических элементов и увидели, что все они важны для жизни растений, животных и человека. Многие важные элементы не были освещены в этой презентации, т.к. брались только те вещества, которые нужно употреблять человеку в достаточно большом количестве каждый день (минимум – 300мг). Итог
Над презентацией работал ученик 9 «А» класса, ГОУ СОШ №425 Залесов А.К. Используемые ресурсы: а) И.А. Шапошникова, И.В. Болгова. «Таблица Менделеева в живых организмах» б) www.wikipedia.org в) www.xumuk.ru